I have three csv files which are read into r as dataframes. I want to create a line plot which graphs the "means" columns and uses the "sd" column as an above and below error bar.
This code gives me a multiple lines on a plot but with only one error bar:
ggplot(data=edge_c_summary,aes(x = times,y=means))+
geom_errorbar(aes(ymin=means-sd,ymax=means+sd))+
geom_line(aes(y=means))+
geom_line(data = ridge_c_summary,aes(x=times,y=means))+
geom_errorbar(aes(ymin=means-sd,ymax=means+sd))+
geom_line(data = valley_c_summary,aes(x=times,y=means))+
geom_errorbar(aes(ymin=means-sd,ymax=means+sd))
How can I change this code to make each line have the appropriate error bar for each point?
edge_c_summary
"","times","means","sd"
"1",1,23.6566108007449,0.97897699678658
"12",2,22.7815144766147,1.15800405896118
"19",3,23.3195763580458,1.10152573531062
"20",4,22.3962138084633,1.25626506966065
"21",5,23.0657328322515,1.17624485082946
"22",6,22.1194877505568,1.32888708114411
"23",7,22.9947511929107,1.25304663407105
"24",8,23.121714922049,1.53918225223541
"25",9,25.9304732720463,2.01279986529601
"2",10,27.2791342952275,2.63979959777048
"3",11,28.7510747185261,2.66804271260005
"4",12,29.4782463928968,3.00223132377325
"5",13,29.7261003070624,2.90440605187483
"6",14,30.3099889012209,3.15106156713522
"7",15,29.4545951486163,2.87696770282654
"8",16,29.1991111111111,2.73260690130748
"9",17,27.6885928961749,2.28949704545011
"10",18,26.8358888888889,1.99002819664902
"11",19,25.4207579378628,1.30543445825041
"13",20,24.6197777777778,1.28917282788259
"14",21,24.4374658469945,1.0001400647698
"15",22,23.7050055617353,1.12314557626891
"16",23,23.9770833333333,0.974658804573153
"17",24,23.2177975528365,1.12526920271045
"18",25,23.5250320924262,1.12891528015421
ridge_c_summary
"","times","means","sd"
"1",1,23.681434407626,0.989915240381175
"2",10,26.7027079303675,2.32962251222789
"3",11,27.9654291654292,2.38864888176336
"4",12,28.7457528957529,2.69414439432221
"5",13,28.9534165181224,2.68690267338402
"6",14,29.4438223938224,2.91979342111894
"7",15,28.8215325215325,2.6872152195944
"8",16,28.5877813504823,2.57493709806332
"9",17,27.3870056497175,2.19608259108006
"10",18,26.8308927424534,2.03789359897681
"11",19,25.5481404343945,1.41979111451077
"12",2,23.1454838709677,1.13422699496685
"13",20,24.9886246786632,1.36068090029202
"14",21,24.5601606664683,1.05832239119392
"15",22,24.1409646302251,1.16360525517371
"16",23,24.0566369047619,1.00175077418615
"17",24,23.6077813504823,1.11726702939239
"18",25,23.5780952380952,1.10355334756497
"19",3,23.3004172876304,1.10354221988403
"20",4,22.7314193548387,1.23686119466203
"21",5,23.0191654247392,1.18428611015011
"22",6,22.451935483871,1.29021975136401
"23",7,22.9037125037125,1.26259590667806
"24",8,23.1967741935484,1.48879695691969
"25",9,25.306534006534,1.76717581300979
valley_c_summary
"","times","means","sd"
"1",1,23.6594671201814,1.00814940817697
"2",10,26.0565511411665,2.16929556678063
"3",11,27.7657114295235,2.35397972988285
"4",12,28.3993260320135,2.71926477093656
"5",13,28.8432522492503,2.59319788793986
"6",14,29.1439865433137,2.86403883310426
"7",15,28.7382333333333,2.61080581070595
"8",16,28.488161209068,2.54623846359401
"9",17,27.2384794931644,2.06859192137737
"10",18,26.7695542472666,1.97980925001807
"11",19,25.4289052069426,1.36213237635363
"12",2,23.234375,1.2419107444281
"13",20,25.0288607594937,1.58285604050205
"14",21,24.5043071786311,1.02557712012499
"15",22,24.1491983122363,1.22981051413331
"16",23,24.0402003338898,0.981743823579669
"17",24,23.6662173546757,1.19576801398666
"18",25,23.700081300813,1.0898936548588
"19",3,23.3752591106653,1.08538931168628
"20",4,22.8620981387479,1.32723123739125
"21",5,23.1140421263791,1.16174678633048
"22",6,22.5889264581572,1.39010429942654
"23",7,22.9904,1.22621465254853
"24",8,23.0340371621622,1.48447539690888
"25",9,25.0078692897633,1.60606487763767
Easiest solution is to add an extra column to each data frame for grouping. For example, using dplyr::mutate and dplyr::bind_rows:
library(dplyr)
edge_c_summary %>%
mutate(source = "edge_c") %>%
bind_rows(mutate(ridge_c_summary, source = "ridge_c")) %>%
bind_rows(mutate(valley_c_summary, source = "valley_c")) %>%
ggplot(aes(times, means) +
geom_line(aes(color = source, group = source)) +
geom_errorbar(aes(ymin = means - sd, ymax = means + sd, color = source))
edge_c_summary <- read.csv(file="edge_c_summary.csv",header=TRUE,sep=",")
ridge_c_summary <- read.csv(file="ridge_c_summary.csv",header=TRUE,sep=",")
valley_c_summary <- read.csv(file="valley_c_summary.csv",header=TRUE,sep=",")
I also added different colors so they are somewhat distinguishable, that you can also ignore if you don't like them.
ggplot(data=edge_c_summary,aes(x = times,y=means))+
geom_errorbar(data=edge_c_summary,aes(ymin=means-sd,ymax=means+sd))+
geom_line(aes(y=means))+
geom_line(data = ridge_c_summary,aes(x=times,y=means),colour="red")+
geom_errorbar(data=ridge_c_summary,aes(ymin=means-sd,ymax=means+sd),colour="red")+
geom_line(data = valley_c_summary,aes(x=times,y=means),colour="blue")+
geom_errorbar(data=valley_c_summary,aes(ymin=means-sd,ymax=means+sd),colour="blue")

If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With