I'm using xsd to create c++ code from a xml schema file. For a xml type multiple functions are created (for serialization etc).
If the type is called XmlType multiple functions of the following form are created:
XmlType XmlType_(const XmlType& a, const string& b)
string XmlType_(const XmlType& a)
...
This are normal functions and not members of XmlType and they all have the same name. For XmlType2 the functions would be called XmlType2_.
I would like to write a utility template class for all the different xml types of my xml scheme. The different functions are going to be called insight this class. What I have so far is something like this:
template<typename T>
using TFunc1 = T (*)(const T&, const string&);
template<typename T>
using TFunc2 = string (*)(const T&);
template<typename T, TFunc1<T> func2, TFunc2<T> func2>
class XmlUtil {
...
};
When create an instance of the XmlUtil class if have to do it like this:
XmlUtil<XmlType, XmlType_, XmlType_> util;
This feels a bit redundant and gets worse, when I have to pass more functions as parameters.
I would like to use the util class like this:
XmlUtil<XmlType, XmlType_> util;
or even better like this
XmlUtil<XmlType> util;
The only way I can think of is to somehow use define, but it doesn't feel right.
Is there an other way to do this?
EDIT: I'm using a define now:
#define TRPL(name) name, name ## _, name ## _
...
XmlUtil<TRPL(XmlType)> util;
I'll edit this, if I find something better (maybe override sets like Yakk suggested in his answer).
This:
XmlUtil<XmlType> util;
is impossible because there is no way to get from XmlType
to XmlType_
. Their relationship is discarded after the automatic code generator.
However this:
XmlUtil<XmlType_> util;
may be possible. You can deduce the function type of XmlType_
and then use the deduced return type which will be XmlType
. I believe there are standard library function for this purpose.
As for the two different overloads, that may be trickier. I do not think that you can pass a function overload set as a template parameter, the resolution is done on the template argument in the context of the template parameter to one function. I don't think there is a way to defer this action without using the preprocessor.
So I would argue that you should use a #define
. It is better than nothing.
This looks like a job for override sets.
static struct foo_override_set_type {
template<typename... Args>
auto operator()( Args...&& args ) const
->
decltype( foo( std::forward<Args>(args)... ) )
{ return ( foo( std::forward<Args>(args)... ) ); }
template<typename T>
operator T() { return foo; }
} foo_override_set;
Objects of type foo_override_set_type
represent the entire override set of foo
. Calling them with operator()
does an override set lookup on foo
and calls the resulting function. Casting them to a function pointer does the same thing as casting the token foo
to a function pointer (or other value).
Your code generation can auto-generate such override set types. It can also make a traits class that maps from your type XmlType
to the override set of XmlType_
functions via specialization.
Then, your XmlUtil<XmlType>
can access the override set of XmlType_
via that traits class. It first instantiates the override set variable, then invokes ()
on it.
As an aside, @Xeo has a proposal to make creating such objects as easy as typing []XmlType_
in C++1y or C++1z.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With