Using Google Maps API v3, I was able to create multiple google.maps.Circle
objects on my map. However, I now need to "connect" them somehow. I have the following map with multiple circles:
I now need to get it to look something like this:
(source: pcwp.com)
I've looked all over the Internet for solutions, but to no avail. Any ideas?
Procedure: Set the compass to the radius of the circle and strike six equidistant arcs about its perimeter. Connect two neighboring intersections to the center of the circle. Bisect the resulting angle. Beginning at the intersection of the bisector and the circle strike six more arcs around the circle.
A polygon is a closed figure on a plane formed from a finite number of lines segments connected end-to-end. As a circle is curved, it cannot be formed from line segments, as thus does not fit the conditions needed to be a polygon.
What Are Inscribed Or Circumscribed Polygons. An inscribed polygon is a polygon in which all vertices lie on a circle. The polygon is inscribed in the circle and the circle is circumscribed about the polygon. ( It is a polygon in a circle) A circumscribed polygon is a polygon in which each side is a tangent to a circle ...
You may want to consider tackling this problem by adding addional circles at x
intervals with increasing radiuses between each point of the path. This would be very easy to implement and will work for any direction of the cyclone. Obviously Matti's suggested solution to create a polygon by connecting all the tangents would be more accurate, but you can consider this as an possible alternative. The main downside is that it may require some effort to make it look pretty, and it will obviously use more client-side resources than if you were to render a single polygon.
Let's start by recreating your map:
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8"/>
<title>Google Maps Cyclones</title>
<script src="http://maps.google.com/maps/api/js?sensor=false"
type="text/javascript"></script>
</head>
<body>
<div id="map" style="width: 600px; height: 400px"></div>
<script type="text/javascript">
var i;
var mapOptions = {
mapTypeId: google.maps.MapTypeId.TERRAIN,
center: new google.maps.LatLng(28.50, -81.50),
zoom: 5
};
var map = new google.maps.Map(document.getElementById("map"),
mapOptions);
var pathPoints = [
new google.maps.LatLng(25.48, -71.26),
new google.maps.LatLng(25.38, -73.70),
new google.maps.LatLng(25.28, -77.00),
new google.maps.LatLng(25.24, -80.11),
new google.maps.LatLng(25.94, -82.71),
new google.maps.LatLng(27.70, -87.14)
];
pathPoints[0].radius = 80;
pathPoints[1].radius = 100;
pathPoints[2].radius = 200;
pathPoints[3].radius = 300;
pathPoints[4].radius = 350;
pathPoints[5].radius = 550;
new google.maps.Polyline({
path: pathPoints,
strokeColor: '#00FF00',
strokeOpacity: 1.0,
strokeWeight: 3,
map: map
});
for (i = 0; i < pathPoints.length; i++) {
new google.maps.Circle({
center: pathPoints[i],
radius: pathPoints[i].radius * 1000,
fillColor: '#FF0000',
fillOpacity: 0.2,
strokeOpacity: 0.5,
strokeWeight: 1,
map: map
});
}
</script>
</body>
</html>
Google Maps Cyclones - Figure 1 http://img186.imageshack.us/img186/1197/mp1h.png
I assume that you heave already arrived to this point, and therefore the above example should be self-explanatory. Basically we have just defined 6 points, along with 6 radiuses, and we have rendered the circles on the map, together with the green path.
Before we continue, we need to define a few methods to be able to calculate the distance and the bearing from one point to another. We will also need a method that will return the destination point when given a bearing and the distance travelled from a source point. Fortunately, there is a very good JavaScript implementation for these methods by Chris Veness at Calculate distance, bearing and more between Latitude/Longitude points. The following methods have been adapted to work with Google's google.maps.LatLng
:
Number.prototype.toRad = function() {
return this * Math.PI / 180;
}
Number.prototype.toDeg = function() {
return this * 180 / Math.PI;
}
google.maps.LatLng.prototype.destinationPoint = function(brng, dist) {
dist = dist / 6371;
brng = brng.toRad();
var lat1 = this.lat().toRad(), lon1 = this.lng().toRad();
var lat2 = Math.asin( Math.sin(lat1)*Math.cos(dist) +
Math.cos(lat1)*Math.sin(dist)*Math.cos(brng) );
var lon2 = lon1 + Math.atan2(Math.sin(brng)*Math.sin(dist)*Math.cos(lat1),
Math.cos(dist)-Math.sin(lat1)*Math.sin(lat2));
if (isNaN(lat2) || isNaN(lon2)) return null;
return new google.maps.LatLng(lat2.toDeg(), lon2.toDeg());
}
google.maps.LatLng.prototype.bearingTo = function(point) {
var lat1 = this.lat().toRad(), lat2 = point.lat().toRad();
var dLon = (point.lng()-this.lng()).toRad();
var y = Math.sin(dLon) * Math.cos(lat2);
var x = Math.cos(lat1)*Math.sin(lat2) -
Math.sin(lat1)*Math.cos(lat2)*Math.cos(dLon);
var brng = Math.atan2(y, x);
return ((brng.toDeg()+360) % 360);
}
google.maps.LatLng.prototype.distanceTo = function(point) {
var lat1 = this.lat().toRad(), lon1 = this.lng().toRad();
var lat2 = point.lat().toRad(), lon2 = point.lng().toRad();
var dLat = lat2 - lat1;
var dLon = lon2 - lon1;
var a = Math.sin(dLat/2) * Math.sin(dLat/2) +
Math.cos(lat1) * Math.cos(lat2) *
Math.sin(dLon/2) * Math.sin(dLon/2);
return 6371 * (2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a)));
}
We would then need to add another loop that renders the intermediate circles inside the for
loop that we used previously to render the original circles. Here is how it can be implemented:
var distanceStep = 50; // Render an intermediate circle every 50km.
for (i = 0; i < pathPoints.length; i++) {
new google.maps.Circle({
center: pathPoints[i],
radius: pathPoints[i].radius * 1000,
fillColor: '#FF0000',
fillOpacity: 0.2,
strokeOpacity: 0.5,
strokeWeight: 1,
map: map
});
if (i < (pathPoints.length - 1)) {
distanceToNextPoint = pathPoints[i].distanceTo(pathPoints[i + 1]);
bearingToNextPoint = pathPoints[i].bearingTo(pathPoints[i + 1]);
radius = pathPoints[i].radius;
radiusIncrement = (pathPoints[i + 1].radius - radius) /
(distanceToNextPoint / distanceStep);
for (j = distanceStep;
j < distanceToNextPoint;
j += distanceStep, radius += radiusIncrement) {
new google.maps.Circle({
center: pathPoints[i].destinationPoint(bearingToNextPoint, j),
radius: radius * 1000,
fillColor: '#FF0000',
fillOpacity: 0.2,
strokeWeight: 0,
map: map
});
}
}
}
This is what we would get:
And this is how it would look without the black stroke around the original circles:
Google Maps Cyclones - Figure 3 http://img181.imageshack.us/img181/2908/mp3t.png
As you may notice, the main challenge will be to render the circles with a consistent opacity, even when they overlap on each other. There are a few options to achieve this, but that could be the topic of another question.
In any case, the following is the full implementation for this example:
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8"/>
<title>Google Maps Cyclones</title>
<script src="http://maps.google.com/maps/api/js?sensor=false"
type="text/javascript"></script>
</head>
<body>
<div id="map" style="width: 600px; height: 400px"></div>
<script type="text/javascript">
Number.prototype.toRad = function() {
return this * Math.PI / 180;
}
Number.prototype.toDeg = function() {
return this * 180 / Math.PI;
}
google.maps.LatLng.prototype.destinationPoint = function(brng, dist) {
dist = dist / 6371;
brng = brng.toRad();
var lat1 = this.lat().toRad(), lon1 = this.lng().toRad();
var lat2 = Math.asin( Math.sin(lat1)*Math.cos(dist) +
Math.cos(lat1)*Math.sin(dist)*Math.cos(brng) );
var lon2 = lon1 + Math.atan2(Math.sin(brng)*Math.sin(dist)*Math.cos(lat1),
Math.cos(dist)-Math.sin(lat1)*Math.sin(lat2));
if (isNaN(lat2) || isNaN(lon2)) return null;
return new google.maps.LatLng(lat2.toDeg(), lon2.toDeg());
}
google.maps.LatLng.prototype.bearingTo = function(point) {
var lat1 = this.lat().toRad(), lat2 = point.lat().toRad();
var dLon = (point.lng()-this.lng()).toRad();
var y = Math.sin(dLon) * Math.cos(lat2);
var x = Math.cos(lat1)*Math.sin(lat2) -
Math.sin(lat1)*Math.cos(lat2)*Math.cos(dLon);
var brng = Math.atan2(y, x);
return ((brng.toDeg()+360) % 360);
}
google.maps.LatLng.prototype.distanceTo = function(point) {
var lat1 = this.lat().toRad(), lon1 = this.lng().toRad();
var lat2 = point.lat().toRad(), lon2 = point.lng().toRad();
var dLat = lat2 - lat1;
var dLon = lon2 - lon1;
var a = Math.sin(dLat/2) * Math.sin(dLat/2) +
Math.cos(lat1) * Math.cos(lat2) *
Math.sin(dLon/2) * Math.sin(dLon/2);
return 6371 * (2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a)));
}
var i;
var j;
var distanceToNextPoint;
var bearingToNextPoint;
var radius;
var radiusIncrement;
var distanceStep = 50; // Render an intermediate circle every 50km.
var mapOptions = {
mapTypeId: google.maps.MapTypeId.TERRAIN,
center: new google.maps.LatLng(28.50, -81.50),
zoom: 5
};
var map = new google.maps.Map(document.getElementById("map"), mapOptions);
var pathPoints = [
new google.maps.LatLng(25.48, -71.26),
new google.maps.LatLng(25.38, -73.70),
new google.maps.LatLng(25.28, -77.00),
new google.maps.LatLng(25.24, -80.11),
new google.maps.LatLng(25.94, -82.71),
new google.maps.LatLng(27.70, -87.14)
];
pathPoints[0].radius = 80;
pathPoints[1].radius = 100;
pathPoints[2].radius = 200;
pathPoints[3].radius = 300;
pathPoints[4].radius = 350;
pathPoints[5].radius = 550;
new google.maps.Polyline({
path: pathPoints,
strokeColor: '#00FF00',
strokeOpacity: 1.0,
strokeWeight: 3,
map: map
});
for (i = 0; i < pathPoints.length; i++) {
new google.maps.Circle({
center: pathPoints[i],
radius: pathPoints[i].radius * 1000,
fillColor: '#FF0000',
fillOpacity: 0.2,
strokeOpacity: 0.5,
strokeWeight: 0,
map: map
});
if (i < (pathPoints.length - 1)) {
distanceToNextPoint = pathPoints[i].distanceTo(pathPoints[i + 1]);
bearingToNextPoint = pathPoints[i].bearingTo(pathPoints[i + 1]);
radius = pathPoints[i].radius;
radiusIncrement = (pathPoints[i + 1].radius - radius) /
(distanceToNextPoint / distanceStep);
for (j = distanceStep;
j < distanceToNextPoint;
j += distanceStep, radius += radiusIncrement) {
new google.maps.Circle({
center: pathPoints[i].destinationPoint(bearingToNextPoint, j),
radius: radius * 1000,
fillColor: '#FF0000',
fillOpacity: 0.2,
strokeWeight: 0,
map: map
});
}
}
}
</script>
</body>
</html>
If it's always a string of circles along a line, you could process a pair of adjacent circles at a time, find the two lines that are tangents to both of them and connect them up by their intersections to make one contiguous path. Add some interpolated bezier control points for smoothness.
This might break if your string of circles isn't as neat as the one in your first post (lots of overlap, circles inside circles, etc), but it's a start.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With