I was trying to implement multicolor texts as shown here:
multicolor text on chart
which referenced this:
multicolor text in R
This is what I came up with (with help from here):
require(ggplot2)
require(grid)
png(file="multicolortitle.png",width=800,height=500)
qplot(x = hp,y = mpg,data = mtcars,color=factor(mtcars$cyl),size=2) +
scale_colour_manual(values = c("red3","green3","blue3")) +
theme_bw() +
opts(title = " \n ") +
opts(legend.position = "none")
spacing <- 20
grid.text(0.5, unit(1,"npc") - unit(1,"line"),
label=paste("4 cylinder,",paste(rep(" ",spacing*2), collapse='')),
gp=gpar(col="red3", fontsize=16,fontface="bold"))
grid.text(0.5, unit(1,"npc") - unit(1,"line"),
label=paste(paste(rep(" ",spacing), collapse=''),"6 cylinder,",
paste(rep(" ",spacing), collapse='')),
gp=gpar(col="green3", fontsize=16,fontface="bold"))
grid.text(0.5, unit(1,"npc") - unit(1,"line"),
label=paste(paste(rep(" ",spacing*2), collapse=''),"8 cylinder"),
gp=gpar(col="blue3", fontsize=16,fontface="bold"))
grid.text(0.5, unit(1,"npc") - unit(2,"line"),
label=paste(paste(rep(" ",spacing*0), collapse=''),
"- Horsepower versus Miles per Gallon"),
gp=gpar(col="black", fontsize=16,fontface="bold"))
dev.off()
Here's the resulting graph:
So, my question: is there a more elegant method to use for this? I'd like to be able to use ggsave
for example, and creating the spacing for this is a highly manual process - not suited for scenarios where I need to automatically make hundreds of plots of this nature. I could see writing some functions on top of this, but maybe there's a better way to implement the methods utilized with the base plotting function?
A possible strategy wrapping the words in a dummy table,
library(gridExtra)
library(grid)
library(ggplot2)
title = c('Concentration of ','affluence',' and ','poverty',' nationwide')
colors = c('black', '#EEB422','black', '#238E68','black')
grid.arrange(ggplot(),
top = tableGrob(t(title),
theme=ttheme_minimal(padding=unit(c(0,2),'mm'),
base_colour = colors)))
enter image description here
Here's a more general approach that takes advantage of a few additional grid functions. It's not particularly well-polished, but it may give you some useful ideas:
library(grid)
library(ggplot2)
p <- ggplot(data=mtcars, aes(mpg,hp,color=factor(cyl),size=2)) +
geom_point() + theme_bw() +
opts(title = " \n ") + opts(legend.position="none")
## Get factor levels
levs <- levels(factor(mtcars$cyl))
n <- length(levs)
## Get factors' plotting colors
g <- ggplot_build(p)
d <- unique(g$data[[1]][c("colour", "group")])
cols <- d$colour[order(d$group)]
## Use widest label's width to determine spacing
labs <- paste(levs, "cylinder")
xlocs <- unit(0.5, "npc") +
1.1 * (seq_len(n) - mean(seq_len(n))) * max(unit(1, "strwidth", labs))
## Plot labels in top 10% of device
pushViewport(viewport(y=0.95, height=0.1))
grid.text(paste(levs, "cylinder"),
x = xlocs, y=unit(0.5, "lines"),
gp = gpar(col=cols, fontface="bold"))
grid.text("- Horsepower versus Miles per Gallon",
y = unit(-0.5, "lines"))
upViewport()
## Plot main figure in bottom 90% of device
pushViewport(viewport(y=0.45, height=0.9))
print(p, newpage=FALSE)
upViewport()
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With