Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Move NAs to the end of each column in a data frame

I have such a data frame:

df <- structure(list(a = c(NA, NA, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L), b = c(NA, NA, NA, 1L, 2L, 3L, 4L, 5L, 6L, 7L), d = c(NA, NA, NA, NA, 1L, 2L, 3L, 4L, 5L, 6L)), .Names = c("a", "b", "d"), row.names = c(NA, -10L), class = "data.frame")

> df
    a  b  d
1  NA NA NA
2  NA NA NA
3   1 NA NA
4   2  1 NA
5   3  2  1
6   4  3  2
7   5  4  3
8   6  5  4
9   7  6  5
10  8  7  6

In each column, I'd like to move the non-NA values up to the start, and move the NAs to the end:

> df.out
    a  b  d
1   1  1  1
2   2  2  2
3   3  3  3
4   4  4  4
5   5  5  5
6   6  6  6
7   7  7 NA
8   8 NA NA
9  NA NA NA
10 NA NA NA

Update to make my questions clearer..

df <- structure(list(a = c(NA, NA, 1, 5, 34, 7, 3, 5, 8, 4), b = c(NA, 
NA, NA, 57, 2, 7, 9, 5, 12, 100), d = c(NA, NA, NA, NA, 5, 7, 
2, 8, 2, 5)), .Names = c("a", "b", "d"), row.names = c(NA, -10L
), class = "data.frame")

> df
    a   b  d
1  NA  NA NA
2  NA  NA NA
3   1  NA NA
4   5  57 NA
5  34   2  5
6   7   7  7
7   3   9  2
8   5   5  8
9   8  12  2
10  4 100  5

should result in:

    a   b  d
1   1  57  5
2   5   2  7
3  34   7  2
4   7   9  8
5   3   5  2
6   5  12  5
7   8 100 NA
8   4  NA NA
9  NA  NA NA
10 NA  NA NA

Seems like an easy task but I am stuck on where to start.. Can you help?

like image 657
erc Avatar asked Sep 16 '14 12:09

erc


People also ask

How do I drop columns with all NA values?

If we need to drop such columns that contain NA, we can use the axis=column s parameter of DataFrame. dropna() to specify deleting the columns. By default, it removes the column where one or more values are missing.


2 Answers

Another solution using lapply (without sorting/reordering the data- per your comments)

df[] <- lapply(df, function(x) c(x[!is.na(x)], x[is.na(x)]))
df
#     a   b  d
# 1   1  57  5
# 2   5   2  7
# 3  34   7  2
# 4   7   9  8
# 5   3   5  2
# 6   5  12  5
# 7   8 100 NA
# 8   4  NA NA
# 9  NA  NA NA
# 10 NA  NA NA

Or using data.table in order to update df by reference, rather than creating a copy of it (that solution won't sort your data neither)

library(data.table)
setDT(df)[, names(df) := lapply(.SD, function(x) c(x[!is.na(x)], x[is.na(x)]))]
df
#      a   b  d
#  1:  1  57  5
#  2:  5   2  7
#  3: 34   7  2
#  4:  7   9  8
#  5:  3   5  2
#  6:  5  12  5
#  7:  8 100 NA
#  8:  4  NA NA
#  9: NA  NA NA
# 10: NA  NA NA

Some benchmarks reveal the base solution is the fastest by far:

library("microbenchmark")
david <- function() lapply(df, function(x) c(x[!is.na(x)], x[is.na(x)]))
dt <- setDT(df)
david.dt <- function() dt[, names(dt) := lapply(.SD, function(x) c(x[!is.na(x)], x[is.na(x)]))]

microbenchmark(as.data.frame(lapply(df, beetroot)), david(), david.dt())
# Unit: microseconds
#                                 expr      min       lq   median        uq      max neval
#  as.data.frame(lapply(df, beetroot)) 1145.224 1215.253 1274.417 1334.7870 4028.507   100
#                              david()  116.515  127.382  140.965  149.7185  308.493   100
#                           david.dt() 3087.335 3247.920 3330.627 3415.1460 6464.447   100
like image 163
David Arenburg Avatar answered Oct 11 '22 20:10

David Arenburg


After completely misunderstanding the question, here is my final answer:

# named after beetroot for being the first to ever need this functionality
beetroot <- function(x) {
    # count NA
    num.na <- sum(is.na(x))
    # remove NA
    x <- x[!is.na(x)]
    # glue the number of NAs at the end
    x <- c(x, rep(NA, num.na))
    return(x)
}

# apply beetroot over each column in the dataframe
as.data.frame(lapply(df, beetroot))

It will count the NAs, remove the NAs, and glue NAs at the bottom for each column in the data frame.

like image 22
PascalVKooten Avatar answered Oct 11 '22 19:10

PascalVKooten