I have several algorithms that depend on the efficiency of determining whether an element exists in a vector or not. It seems to me that %in%
(which is equivalent to is.element()
) should be the most efficient as it simply returns a Boolean value. After testing several methods, to my surprise, those methods are by far the most inefficient. Below is my analysis (the results get worse as the size of the vectors increase):
EfficiencyTest <- function(n, Lim) {
samp1 <- sample(Lim, n)
set1 <- sample(Lim, Lim)
print(system.time(for(i in 1:n) {which(set1==samp1[i])}))
print(system.time(for(i in 1:n) {samp1[i] %in% set1}))
print(system.time(for(i in 1:n) {is.element(samp1[i], set1)}))
print(system.time(for(i in 1:n) {match(samp1[i], set1)}))
a <- system.time(set1 <- sort(set1))
b <- system.time(for (i in 1:n) {BinVecCheck(samp1[i], set1)})
print(a+b)
}
> EfficiencyTest(10^3, 10^5)
user system elapsed
0.29 0.11 0.40
user system elapsed
19.79 0.39 20.21
user system elapsed
19.89 0.53 20.44
user system elapsed
20.04 0.28 20.33
user system elapsed
0.02 0.00 0.03
Where BinVecCheck
is a binary search algorithm that I wrote that returns TRUE
/FALSE
. Note that I include the time it takes to sort the vector with the final method. Here is the code for the binary search:
BinVecCheck <- function(tar, vec) {
if (tar==vec[1] || tar==vec[length(vec)]) {return(TRUE)}
size <- length(vec)
size2 <- trunc(size/2)
dist <- (tar - vec[size2])
if (dist > 0) {
lower <- size2 - 1L
upper <- size
} else {
lower <- 1L
upper <- size2 + 1L
}
while (size2 > 1 && !(dist==0)) {
size2 <- trunc((upper-lower)/2)
temp <- lower+size2
dist <- (tar - vec[temp])
if (dist > 0) {
lower <- temp-1L
} else {
upper <- temp+1L
}
}
if (dist==0) {return(TRUE)} else {return(FALSE)}
}
Platform Info:
> sessionInfo()
R version 3.2.1 (2015-06-18)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 7 x64 (build 7601) Service Pack 1
Is there a more efficient way of determining whether an element exists in a vector in R? For example, is there an equivalent R function to the Python set function, that greatly improves on this approach? Also, why is %in%
, and the like, so inefficient even when compared to the which
function which gives more information (not only does it determine existence, but it also gives the indices of all true accounts)?
My tests aren't bearing out all of your claims, but that seems (?) to be due to cross-platform differences (which makes the question even more mysterious, and possibly worth taking up on [email protected]
, although maybe not since the fastmatch
solution below dominates anyway ...)
n <- 10^3; Lim <- 10^5
set.seed(101)
samp1 <- sample(Lim,n)
set1 <- sample(Lim,Lim)
library("rbenchmark")
library("fastmatch")
`%fin%` <- function(x, table) {
stopifnot(require(fastmatch))
fmatch(x, table, nomatch = 0L) > 0L
}
benchmark(which=sapply(samp1,function(x) which(set1==x)),
infun=sapply(samp1,function(x) x %in% set1),
fin= sapply(samp1,function(x) x %fin% set1),
brc= sapply(samp1,BinVecCheck,vec=sort(set1)),
replications=20,
columns = c("test", "replications", "elapsed", "relative"))
## test replications elapsed relative
## 4 brc 20 0.871 2.329
## 3 fin 20 0.374 1.000
## 2 infun 20 6.480 17.326
## 1 which 20 10.634 28.433
This says that %in%
is about twice as fast as which
-- your BinVecCheck
function is 7x better, but the fastmatch
solution from here gets another factor of 2. I don't know if a specialized Rcpp implementation could do better or not ...
In fact, I get different answers even when running your code:
## user system elapsed (which)
## 0.488 0.096 0.586
## user system elapsed (%in%)
## 0.184 0.132 0.315
## user system elapsed (is.element)
## 0.188 0.124 0.313
## user system elapsed (match)
## 0.148 0.164 0.312
## user system elapsed (BinVecCheck)
## 0.048 0.008 0.055
update: on r-devel
Peter Dalgaard explains the platform discrepancy (which is an R version difference, not an OS difference) by pointing to the R NEWS entry:
match(x, table)
is faster, sometimes by an order of magnitude, whenx
is of length one and incomparables is unchanged, thanks to Haverty's PR#16491.
sessionInfo()
## R Under development (unstable) (2015-10-23 r69563)
## Platform: i686-pc-linux-gnu (32-bit)
## Running under: Ubuntu precise (12.04.5 LTS)
%in%
is just sugar for match, and is defined as:
"%in%" <- function(x, table) match(x, table, nomatch = 0) > 0
Both match
and which
are low level (compiled C) functions called by .Internal()
. You can actually see the source code by using the pryr package:
install.packages("pryr")
library(pryr)
pryr::show_c_source(.Internal(which(x)))
pryr::show_c_source(.Internal(match(x, table, nomatch, incomparables)))
You would be pointed to this page for which and this page for match.
which
does not perform any of the casting, checks etc that match
performs. This might explain its higher performance in your tests (but I haven't tested your results myself).
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With