colum 1, colum2
a,b,c     30
b,c,f     40
a,g,z     50
.
.
.
Using above dataframe with col1,2 I'd like to have dataframe as below dataframe with col3, 4. 
Additionally, col1 consists of values with commas. col4 consists of sum of col2 following col3.
column3, column4
a        80
b        70
c        70
f        40
g        50
z        50
Use:
df = (df.set_index('colum2')['colum1']
        .str.split(',', expand=True)
        .stack()
        .reset_index(name='column3')
        .groupby('column3', as_index=False)['colum2']
        .sum()
        .rename(columns={'colum2':'column4'})
      )
print (df)
  column3  column4
0       a       80
1       b       70
2       c       70
3       f       40
4       g       50
5       z       50
Explanation:
set_index by column colum2
DataFrame by split
stack
reset_index
groupby and aggregate sum
Another solution:
from itertools import chain
a = df['colum1'].str.split(',')
lens = a.str.len()
df = pd.DataFrame({
    'column3' : list(chain.from_iterable(a)), 
    'column4' : df['colum2'].repeat(lens)
}).groupby('column3', as_index=False)['column4'].sum()
print (df)
  column3  column4
0       a       80
1       b       70
2       c       70
3       f       40
4       g       50
5       z       50
Explanation:
split
len
repeat columns and flatten colum1
groupby and aggregate sum
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With