I am an aerospace student working on a school project for our python programming course. The assignment is create a program only using Pygame and numpy. I decided to create a wind tunnel simulation that simulates the airflow over a two dimensional wing. I was wondering if there is a more efficient way of doing the computation from a programming perspective. I will explain the program:
I have attached an image here:
The (steady) flow field is modeled using the vortex panel method. Basically, I am using a grid of Nx times Ny points where at each point a velocity (u,v) vector is given. Then using Pygame I map these grid points as circles, so that they resemble an area of influence. The grid points are the grey circles in the following image:
I create N particles and determine their velocities by iterating as follows:
create a list of particles.
create a grid list.
for each gridpoint in grid list:
for each particle in list of particles:
if particle A is within the area of influence of grid point n (xn,yn):
particle A its velocity = velocity at grid point n.
Visualize everything in Pygame.
this basic way was the only way I could think of visualizing the flow in Pygame. The simulation works pretty well, but If I increase the number of grid points(increase the accuracy of the flow field), the performance decreases. My question is if there is a more efficient way to do this just using pygame and numpy?
I have attached the code here:
import pygame,random,sys,numpy
from Flow import Compute
from pygame.locals import *
import random, math, sys
#from PIL import Image
pygame.init()
Surface = pygame.display.set_mode((1000,600))
#read the airfoil geometry from a dat file
with open ('./resources/naca0012.dat') as file_name:
x, y = numpy.loadtxt(file_name, dtype=float, delimiter='\t', unpack=True)
#parameters used to describe the flow
Nx=30# 30 column grid
Ny=10#10 row grid
N=20#number of panels
alpha=0#angle of attack
u_inf=1#freestream velocity
#compute the flow field
u,v,X,Y= Compute(x,y,N,alpha,u_inf,Nx,Ny)
#The lists used for iteration
Circles = []
Particles= []
Velocities=[]
#Scaling factors used to properly map the potential flow datapoints into Pygame
magnitude=400
vmag=30
umag=30
panel_x= numpy.multiply(x,magnitude)+315
panel_y= numpy.multiply(-y,magnitude)+308
#build the grid suited for Pygame
grid_x= numpy.multiply(X,magnitude)+300
grid_y= numpy.multiply(Y,-1*magnitude)+300
grid_u =numpy.multiply(u,umag)
grid_v =numpy.multiply(v,-vmag)
panelcoordinates= zip(panel_x, panel_y)
# a grid area
class Circle:
def __init__(self,xpos,ypos,vx,vy):
self.radius=16
self.x = xpos
self.y = ypos
self.speedx = 0
self.speedy = 0
#create the grid list
for i in range(Ny):
for s in range(Nx):
Circles.append(Circle(int(grid_x[i][s]),int(grid_y[i][s]),grid_u[i][s],grid_v[i][s]))
Velocities.append((grid_u[i][s],grid_v[i][s]))
#a particle
class Particle:
def __init__(self,xpos,ypos,vx,vy):
self.image = pygame.Surface([10, 10])
self.image.fill((150,0,0))
self.rect = self.image.get_rect()
self.width=4
self.height=4
self.radius =2
self.x = xpos
self.y = ypos
self.speedx = 30
self.speedy = 0
#change particle velocity if collision with grid point
def CircleCollide(Circle,Particle):
Particle.speedx = int(Velocities[Circles.index((Circle))][0])
Particle.speedy = int(Velocities[Circles.index((Circle))][1])
#movement of particles
def Move():
for Particle in Particles:
Particle.x += Particle.speedx
Particle.y += Particle.speedy
#create particle streak
def Spawn(number_of_particles):
for i in range(number_of_particles):
i=i*(300/number_of_particles)
Particles.append(Particle(0, 160+i,1,0))
#create particles again if particles are out of wake
def Respawn(number_of_particles):
for Particle in Particles:
if Particle.x >1100:
Particles.remove(Particle)
if Particles==[]:
Spawn(number_of_particles)
#Collsion detection using pythagoras and distance formula
def CollisionDetect():
for Circle in Circles:
for Particle in Particles:
if Particle.y >430 or Particle.y<160:
Particles.remove(Particle)
if math.sqrt( ((Circle.x-Particle.x)**2) + ((Circle.y-Particle.y)**2) ) <= (Circle.radius+Particle.radius):
CircleCollide(Circle,Particle)
#draw everything
def Draw():
Surface.fill((255,255,255))
#Surface.blit(bg,(-300,-83))
for Circle in Circles:
pygame.draw.circle(Surface,(245,245,245),(Circle.x,Circle.y),Circle.radius)
for Particle in Particles:
pygame.draw.rect(Surface,(150,0,0),(Particle.x,Particle.y,Particle.width,Particle.height),0)
#pygame.draw.rect(Surface,(245,245,245),(Circle.x,Circle.y,1,16),0)
for i in range(len(panelcoordinates)-1):
pygame.draw.line(Surface,(0,0,0),panelcoordinates[i],panelcoordinates[i+1],3)
pygame.display.flip()
def GetInput():
keystate = pygame.key.get_pressed()
for event in pygame.event.get():
if event.type == QUIT or keystate[K_ESCAPE]:
pygame.quit();sys.exit()
def main():
#bg = pygame.image.load("pressure.png")
#bg = pygame.transform.scale(bg,(1600,800))
#thesize= bg.get_rect()
#bg= bg.convert()
number_of_particles=10
Spawn(number_of_particles)
clock = pygame.time.Clock()
while True:
ticks = clock.tick(60)
GetInput()
CollisionDetect()
Move()
Respawn(number_of_particles)
Draw()
if __name__ == '__main__': main()
The code requires another script that computes the flow field itself. It also reads datapoints from a textfile to get the geometry of the wing. I have not provided these two files, but I can add them if necessary. Thank you in advance.
One bottleneck in your code is likely collision detection. CollisionDetect()
computes the distance between each particle and each circle. Then, if a collision is detected, CircleCollide()
finds the index of the circle in Circles
(a linear search), so that the velocities can be retrieved from the same index in Velocities
. Clearly this is ripe for improvement.
First, the Circle
class already has the velocities in the speedx/speedy attributes, so Velocities
can be eliminated .
Second, because the circles are at fixed locations, you can calculate which circle is closest to any given particle from the position of the particle.
# You may already have these values from creating grid_x etc.
# if not, you only need to calculated them once, because the
# circles don't move
circle_spacing_x = Circles[1].x - Circles[0].x
circle_spacing_y = Circles[Nx].y - Circles[0].y
circle_first_x = Circles[0].x - circle_spacing_x / 2
circle_first_y = Circles[0].y - circle_spacing_y / 2
Then CollisionDetect()
becomes:
def CollisionDetect():
for particle in Particles:
if particle.y >430 or particle.y<160:
Particles.remove(particle)
continue
c = (particle.x - circle_first_x) // circle_spacing_x
r = (particle.y - circle_first_y) // circle_spacing_y
circle = Circles[r*Nx + c]
if ((circle.x - particle.x)**2 + (circle.y - particle.y)**2
<= (circle.radius+particle.radius)**2):
particle.speedx = int(circle.speedx)
particle.speedy = int(circle.speedy)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With