Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

ModuleNotFoundError: No module named 'conda' [duplicate]

Tags:

conda

anaconda

I had been using Anaconda with python 2.7

$ python
Python 2.7.14 |Anaconda custom (64-bit)| (default, Dec  7 2017, 17:05:42) 
[GCC 7.2.0] on linux2
Type "help", "copyright", "credits" or "license" for more information.

When I decided to install tensorflow (since for some reason I had the non-gpu version)

The command I used was:

$ conda install -c anaconda tensorflow-gpu

However, after it was done (detail on output of this cmd to follow), I no longer had conda:

$ conda install -c conda-forge keras
Traceback (most recent call last):
  File "/home/me/anaconda2/bin/conda", line 12, in <module>
    from conda.cli import main
ModuleNotFoundError: No module named 'conda'

(Note: I also no longer had Keras) and was now running Python 3.7(!?):

$ python
Python 3.6.8 |Anaconda, Inc.| (default, Dec 30 2018, 01:22:34) 
[GCC 7.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> 

What happened? How do I stop it from happening again? This happened once before and I ended up deleting all my anaconda files, then reinstalling. I don't want to make that a habit.

The output of my conda install was:

$ conda install -c anaconda tensorflow-gpu
Collecting package metadata: done
Solving environment: done

## Package Plan ##

  environment location: /home/me/anaconda2

  added / updated specs:
    - tensorflow-gpu


The following packages will be downloaded:

    package                    |            build
    ---------------------------|-----------------
    _tflow_190_select-0.0.1    |              gpu           2 KB  anaconda
    absl-py-0.7.0              |           py36_0         156 KB  anaconda
    astor-0.7.1                |           py36_0          43 KB  anaconda
    c-ares-1.15.0              |       h7b6447c_1          98 KB  anaconda
    ca-certificates-2018.12.5  |                0         123 KB  anaconda
    certifi-2018.11.29         |           py36_0         146 KB  anaconda
    cudatoolkit-9.0            |       h13b8566_0       340.4 MB  anaconda
    cudnn-7.1.2                |        cuda9.0_0       367.8 MB  anaconda
    cupti-9.0.176              |                0         1.6 MB  anaconda
    curl-7.63.0                |    hbc83047_1000         145 KB  anaconda
    gast-0.2.2                 |           py36_0         138 KB  anaconda
    git-2.11.1                 |                0         9.5 MB  anaconda
    grpcio-1.16.1              |   py36hf8bcb03_1         1.1 MB  anaconda
    krb5-1.16.1                |       h173b8e3_7         1.4 MB  anaconda
    libcurl-7.63.0             |    h20c2e04_1000         550 KB  anaconda
    libedit-3.1.20181209       |       hc058e9b_0         188 KB  anaconda
    libssh2-1.8.0              |       h1ba5d50_4         233 KB  anaconda
    markdown-3.0.1             |           py36_0         107 KB  anaconda
    mkl_fft-1.0.10             |   py36ha843d7b_0         170 KB  anaconda
    mkl_random-1.0.2           |   py36hd81dba3_0         407 KB  anaconda
    ncurses-6.1                |       he6710b0_1         958 KB  anaconda
    numpy-1.15.4               |   py36h7e9f1db_0          47 KB  anaconda
    numpy-base-1.15.4          |   py36hde5b4d6_0         4.3 MB  anaconda
    openssl-1.1.1              |       h7b6447c_0         5.0 MB  anaconda
    pip-18.1                   |           py36_0         1.8 MB  anaconda
    protobuf-3.5.2             |   py36hf484d3e_1         610 KB  anaconda
    python-3.6.8               |       h0371630_0        34.4 MB  anaconda
    qt-4.8.7                   |                2        34.1 MB  anaconda
    setuptools-40.6.3          |           py36_0         625 KB  anaconda
    six-1.12.0                 |           py36_0          22 KB  anaconda
    sqlite-3.26.0              |       h7b6447c_0         1.9 MB  anaconda
    tensorboard-1.9.0          |   py36hf484d3e_0         3.3 MB  anaconda
    tensorflow-1.9.0           |gpu_py36h02c5d5e_1           3 KB  anaconda
    tensorflow-base-1.9.0      |gpu_py36h6ecc378_0       170.8 MB  anaconda
    tensorflow-gpu-1.9.0       |       hf154084_0           2 KB  anaconda
    termcolor-1.1.0            |           py36_1           7 KB  anaconda
    tk-8.6.8                   |       hbc83047_0         3.1 MB  anaconda
    werkzeug-0.14.1            |           py36_0         423 KB  anaconda
    wheel-0.32.3               |           py36_0          35 KB  anaconda
    ------------------------------------------------------------
                                           Total:       985.7 MB

The following NEW packages will be INSTALLED:

  _tflow_190_select  anaconda/linux-64::_tflow_190_select-0.0.1-gpu
  c-ares             anaconda/linux-64::c-ares-1.15.0-h7b6447c_1
  cudatoolkit        anaconda/linux-64::cudatoolkit-9.0-h13b8566_0
  cudnn              anaconda/linux-64::cudnn-7.1.2-cuda9.0_0
  cupti              anaconda/linux-64::cupti-9.0.176-0
  krb5               anaconda/linux-64::krb5-1.16.1-h173b8e3_7
  pip                anaconda/linux-64::pip-18.1-py36_0
  tensorflow-gpu     anaconda/linux-64::tensorflow-gpu-1.9.0-hf154084_0

The following packages will be UPDATED:

  absl-py            conda-forge/noarch::absl-py-0.1.10-py~ --> anaconda/linux-64::absl-py-0.7.0-py36_0
  ca-certificates    conda-forge::ca-certificates-2018.11.~ --> anaconda::ca-certificates-2018.12.5-0
  curl                    pkgs/main::curl-7.60.0-h84994c4_0 --> anaconda::curl-7.63.0-hbc83047_1000
  gast                                         0.2.0-py27_0 --> 0.2.2-py36_0
  grpcio             pkgs/main::grpcio-1.12.1-py27hdbcaa40~ --> anaconda::grpcio-1.16.1-py36hf8bcb03_1
  libcurl              pkgs/main::libcurl-7.60.0-h1ad7b7a_0 --> anaconda::libcurl-7.63.0-h20c2e04_1000
  libedit                 pkgs/main::libedit-3.1-heed3624_0 --> anaconda::libedit-3.1.20181209-hc058e9b_0
  markdown           conda-forge/noarch::markdown-2.6.11-p~ --> anaconda/linux-64::markdown-3.0.1-py36_0
  mkl_fft            pkgs/main::mkl_fft-1.0.6-py27hd81dba3~ --> anaconda::mkl_fft-1.0.10-py36ha843d7b_0
  ncurses                 pkgs/main::ncurses-6.0-h9df7e31_2 --> anaconda::ncurses-6.1-he6710b0_1
  openssl            conda-forge::openssl-1.0.2p-h14c3975_~ --> anaconda::openssl-1.1.1-h7b6447c_0
  protobuf           conda-forge::protobuf-3.5.2-py27hd28b~ --> anaconda::protobuf-3.5.2-py36hf484d3e_1
  python               pkgs/main::python-2.7.14-h1571d57_29 --> anaconda::python-3.6.8-h0371630_0
  setuptools            pkgs/main::setuptools-38.4.0-py27_0 --> anaconda::setuptools-40.6.3-py36_0
  six                  pkgs/main::six-1.11.0-py27h5f960f1_1 --> anaconda::six-1.12.0-py36_0
  sqlite                pkgs/main::sqlite-3.23.1-he433501_0 --> anaconda::sqlite-3.26.0-h7b6447c_0
  tensorflow           conda-forge::tensorflow-1.3.0-py27_0 --> anaconda::tensorflow-1.9.0-gpu_py36h02c5d5e_1
  tk                         pkgs/main::tk-8.6.7-hc745277_3 --> anaconda::tk-8.6.8-hbc83047_0
  wheel              pkgs/main::wheel-0.30.0-py27h2bc6bb2_1 --> anaconda::wheel-0.32.3-py36_0

The following packages will be SUPERSEDED by a higher-priority channel:

  certifi            conda-forge::certifi-2018.11.29-py27_~ --> anaconda::certifi-2018.11.29-py36_0
  git                 pkgs/main::git-2.17.0-pl526hb75a9fb_0 --> anaconda::git-2.11.1-0
  libssh2               pkgs/main::libssh2-1.8.0-h9cfc8f7_4 --> anaconda::libssh2-1.8.0-h1ba5d50_4
  mkl_random         pkgs/main::mkl_random-1.0.2-py27hd81d~ --> anaconda::mkl_random-1.0.2-py36hd81dba3_0
  numpy              pkgs/main::numpy-1.15.4-py27h7e9f1db_0 --> anaconda::numpy-1.15.4-py36h7e9f1db_0
  numpy-base         pkgs/main::numpy-base-1.15.4-py27hde5~ --> anaconda::numpy-base-1.15.4-py36hde5b4d6_0
  qt                         pkgs/main::qt-5.9.4-h4e5bff0_0 --> anaconda::qt-4.8.7-2
  tensorflow-base    pkgs/main::tensorflow-base-1.9.0-eige~ --> anaconda::tensorflow-base-1.9.0-gpu_py36h6ecc378_0
  werkzeug                pkgs/main::werkzeug-0.14.1-py27_0 --> anaconda::werkzeug-0.14.1-py36_0

The following packages will be DOWNGRADED:

  astor                                        0.7.1-py27_0 --> 0.7.1-py36_0
  tensorboard                         1.10.0-py27hf484d3e_0 --> 1.9.0-py36hf484d3e_0
  termcolor                                    1.1.0-py27_1 --> 1.1.0-py36_1


Proceed ([y]/n)? y


Downloading and Extracting Packages
tensorflow-gpu-1.9.0 | 2 KB      | ########################################################################################################################################## | 100% 
absl-py-0.7.0        | 156 KB    | ########################################################################################################################################## | 100% 
six-1.12.0           | 22 KB     | ########################################################################################################################################## | 100% 
git-2.11.1           | 9.5 MB    | ########################################################################################################################################## | 100% 
_tflow_190_select-0. | 2 KB      | ########################################################################################################################################## | 100% 
setuptools-40.6.3    | 625 KB    | ########################################################################################################################################## | 100% 
c-ares-1.15.0        | 98 KB     | ########################################################################################################################################## | 100% 
cupti-9.0.176        | 1.6 MB    | ########################################################################################################################################## | 100% 
libssh2-1.8.0        | 233 KB    | ########################################################################################################################################## | 100% 
gast-0.2.2           | 138 KB    | ########################################################################################################################################## | 100% 
ncurses-6.1          | 958 KB    | ########################################################################################################################################## | 100% 
protobuf-3.5.2       | 610 KB    | ########################################################################################################################################## | 100% 
tensorflow-base-1.9. | 170.8 MB  | ########################################################################################################################################## | 100% 
ca-certificates-2018 | 123 KB    | ########################################################################################################################################## | 100% 
python-3.6.8         | 34.4 MB   | ########################################################################################################################################## | 100% 
cudatoolkit-9.0      | 340.4 MB  | ########################################################################################################################################## | 100% 
qt-4.8.7             | 34.1 MB   | ########################################################################################################################################## | 100% 
sqlite-3.26.0        | 1.9 MB    | ########################################################################################################################################## | 100% 
astor-0.7.1          | 43 KB     | ########################################################################################################################################## | 100% 
tensorboard-1.9.0    | 3.3 MB    | ########################################################################################################################################## | 100% 
mkl_fft-1.0.10       | 170 KB    | ########################################################################################################################################## | 100% 
mkl_random-1.0.2     | 407 KB    | ########################################################################################################################################## | 100% 
certifi-2018.11.29   | 146 KB    | ########################################################################################################################################## | 100% 
wheel-0.32.3         | 35 KB     | ########################################################################################################################################## | 100% 
numpy-base-1.15.4    | 4.3 MB    | ########################################################################################################################################## | 100% 
numpy-1.15.4         | 47 KB     | ########################################################################################################################################## | 100% 
curl-7.63.0          | 145 KB    | ########################################################################################################################################## | 100% 
openssl-1.1.1        | 5.0 MB    | ########################################################################################################################################## | 100% 
tk-8.6.8             | 3.1 MB    | ########################################################################################################################################## | 100% 
libedit-3.1.20181209 | 188 KB    | ########################################################################################################################################## | 100% 
markdown-3.0.1       | 107 KB    | ########################################################################################################################################## | 100% 
werkzeug-0.14.1      | 423 KB    | ########################################################################################################################################## | 100% 
krb5-1.16.1          | 1.4 MB    | ########################################################################################################################################## | 100% 
termcolor-1.1.0      | 7 KB      | ########################################################################################################################################## | 100% 
pip-18.1             | 1.8 MB    | ########################################################################################################################################## | 100% 
libcurl-7.63.0       | 550 KB    | ########################################################################################################################################## | 100% 
tensorflow-1.9.0     | 3 KB      | ########################################################################################################################################## | 100% 
grpcio-1.16.1        | 1.1 MB    | ########################################################################################################################################## | 100% 
cudnn-7.1.2          | 367.8 MB  | ########################################################################################################################################## | 100% 
Preparing transaction: done
Verifying transaction: done
Executing transaction: done

(OK - I see the change to Python 3.7 now, but that's still a nasty thing to have to be careful about. Is there some way to force it to leave my Python version alone?)

like image 766
user1245262 Avatar asked Nov 17 '22 05:11

user1245262


1 Answers

Cause

Changing Python versions without updating the conda package breaks Conda. . The Python version change (2.7.14 -> 3.6.8) created a situation where the new python has a new site-packages which no longer contains a conda package, whereas if you only update within 2.7.x, this wouldn't be an issue.

Conda includes both a set of binaries (e.g., what you're invoking when you type conda in a shell) and a Python package by the same name. The Python package is necessary for Conda as a whole to function and it get's loaded whenever you try to use conda.

It is problematic that many packages on Anaconda seem to be triggering Python version changes, but not subsequently triggering a conda package update. This sounds like something the dependency resolver is overlooking - i.e., default behavior should be to protect integrity of base environment where conda lives.

Trying to Recover

One possible route to recovery is to temporarily use micromamba (a standalone build of mamba) to repair the base environment. You can do all the following from any directory, so maybe use a temporary one or wherever you put downloads. Please report in the comments if this works or needs adjusting!

Installing Micromamba

  1. Download the appropriate micromamba for your platform (here we'll use the latest linux-64 build). The actual binary will be at bin/micromamba:

    # download and unpack
    wget -qO- https://micro.mamba.pm/api/micromamba/linux-64/latest | tar -xvj bin/micromamba
    
  2. Temporarily set MAMBA_ROOT_PREFIX to the base of your install. Typically this is the anaconda3 or miniconda3 folder; in this case, we'll use the path given by OP:

    export MAMBA_ROOT_PREFIX=/home/me/anaconda2
    
  3. Temporarily configured the shell to add the micromamba command:

    eval "$(./bin/micromamba shell hook -s posix)"
    
  4. Test that is works by checking the configuration information:

    micromamba info
    

    The key thing to check for is that base environment: correctly identifies to where your base env is and shows it as (writable). You should also see the pkgs folder in your base env in the package cache: .

Reinstall conda for the Current Python

  1. (Re-)Install the conda package in the base env:

    micromamba install -n base conda
    

    Make sure that the build of Conda that is suggested corresponds to the version of Python currently installed. The --force-reinstall flag might be useful if it claims the requirement is already satisfied. Alternatively, try

    micromamba upgrade -n base conda
    

Try a new shell and see if conda is working. You don't need to keep the micromamba around. However, I do enthusiastically encourage users to permanently install mamba (see next step).

(Optional) Install Mamba in base

  1. Consider also installing Mamba directly in the base environment. It is a compiled (fast!) alternative frontend to Conda environment management.

    micromamba install -n base mamba
    

    One can then use mamba in most places where conda would be used.

Last Recourse

If all else fails you may just have to reinstall. Others have reported installing in other directories and being able to still use and access their environmentss.

Preventions

Avoiding Breakage through Better Practice

First, just a general (opinionated) recommendation: leverage virtual environments more. This isn't directly solving the problem, but it will help you have a workflow that is significantly less prone to encountering such pitfalls. You shouldn't have accepted such a huge change in the first place, not to base. Personally, I rarely install things in base outside of infrastructure (emacs, jupyter-related things, conda, etc.).1 Software packages go into project-specific or at least development-type environments.

For example, were I doing the install shown, I would have made a new environment for it

mamba create -n tf36 anaconda::tensorflow-gpu python=3.6

or whatever Python version you actually wish to work in.

Direct Solution: Pinning

Conda does support package pinning, and this is the more direct way to ensure you never ruin your base install again by transitioning Python 2 to 3. Namely, in the environment's conda-meta folder create a file, pinned and add the line

python 2.7.*

Note that some users have reported similar issues for 3.6 -> 3.7 transitions, so I believe including the minor version here is necessary. See the documentation on pinning.


[1] Note that I use a Miniforge variant (Mambaforge), not the Anaconda installer, so I have more control over base from the start.

like image 164
merv Avatar answered Nov 29 '22 13:11

merv