I want to modify the famous binary search algorithm to return the index of the next bigger item instead of the key being searched.
So we have 4 cases:
e.g:
data = { 1, 3, 5, 7, 9, 11 };
search for 5 or 6 returns 3.
while (low <= high) {
mid = (low + high) / 2;
if (data[mid] < val)
low = mid + 1;
else if (data[mid] > val)
high = mid - 1;
else {
break;
}
}
Currently got it working by examining low and high values. Is there any interesting code to do so!
EDIT !!!
here is how I get it working:
if (low <= high)
found = (low + high) / 2 + 1;
else if (low >= data.length)
found = data.length ;
else if (high < 0)
found = -1;
else
found = low;
I am looking for a more elegant way!
EDIT II !!!
this code works if no duplicates. to handle the case of duplicates we need to modify the first if condition:
if (low <= high)
found = (low + high) / 2 + 1;
to iterate until it finds a bigger element.
Here is some C code that meet's the OP's requirements for searching:
It also demonstrates 4 different types of binary searching:
(It assumes there are no duplicates in data
)
#include <stdio.h>
int BinarySearch( int key, int data[], const int len )
{
int low = 0;
int high = len-1;
while( high >= low )
{
int mid = low + ((high - low) / 2);
/**/ if (data[mid] < key) low = mid + 1;
else if (data[mid] > key) high = mid - 1;
else return mid ;
}
return -1; // KEY_NOT_FOUND
}
int LessThanEqualBinSearch( int key, int data[], const int len )
{
int min = 0;
int max = len-1;
// var max = data.length - 1; // Javascript, Java conversion
while( min <= max)
{
int mid = min + ((max - min) / 2);
/**/ if (data[mid] < key) min = mid + 1;
else if (data[mid] > key) max = mid - 1;
else /*data[mid] = key)*/return mid ;
}
if( max < 0 )
return 0; // key < data[0]
else
if( min > (len-1))
return -1; // key >= data[len-1] // KEY_NOT_FOUND
else
return (min < max)
? min
: max + 1;
}
int LessThanEqualOrLastBinSearch( int key, int data[], const int len )
{
int min = 0;
int max = len-1;
// var max = data.length - 1; // Javascript, Java conversion
while( min <= max)
{
int mid = min + ((max - min) / 2);
/**/ if (data[mid] < key) min = mid + 1;
else if (data[mid] > key) max = mid - 1;
else /*data[mid] = key)*/return mid ;
}
if( max < 0 )
return 0; // key < data[0]
else
if( min > (len-1))
return len-1; // key >= data[len-1]
else
return (min < max)
? min
: max + 1;
}
int NextLargestBinSearch( int key, int data[], const int len )
{
int low = 0;
int high = len-1;
while( low <= high)
{
// To convert to Javascript:
// var mid = low + ((high - low) / 2) | 0;
int mid = low + ((high - low) / 2);
/**/ if (data[mid] < key) low = mid + 1;
else if (data[mid] > key) high = mid - 1;
else return mid + 1;
}
if( high < 0 )
return 0; // key < data[0]
else
if( low > (len-1))
return len; // key >= data[len-1]
else
return (low < high)
? low + 1
: high + 1;
}
int main()
{
int items[] = { 1, 3, 5, 7, 9, 11 };
int LENGTH = sizeof(items) / sizeof(items[0]);
for( int i = -1; i < 14; ++i )
printf( "[%2d]: == %2d <= %2d <| %d > %d\n", i
, BinarySearch ( i, items, LENGTH )
, LessThanEqualBinSearch ( i, items, LENGTH )
, LessThanEqualOrLastBinSearch( i, items, LENGTH )
, NextLargestBinSearch ( i, items, LENGTH )
);
return 0;
}
Output:
[-1]: == -1 <= 0 <| 0 > 0
[ 0]: == -1 <= 0 <| 0 > 0
[ 1]: == 0 <= 0 <| 0 > 1
[ 2]: == -1 <= 1 <| 1 > 1
[ 3]: == 1 <= 1 <| 1 > 2
[ 4]: == -1 <= 2 <| 2 > 2
[ 5]: == 2 <= 2 <| 2 > 3
[ 6]: == -1 <= 3 <| 3 > 3
[ 7]: == 3 <= 3 <| 3 > 4
[ 8]: == -1 <= 4 <| 4 > 4
[ 9]: == 4 <= 4 <| 4 > 5
[10]: == -1 <= 5 <| 5 > 5
[11]: == 5 <= 5 <| 5 > 6
[12]: == -1 <= -1 <| 5 > 6
[13]: == -1 <= -1 <| 5 > 6
1st
column is the standard binary search2nd
column is the Less Than binary search3rd
column is the Less Than Or Last binary search4th
column is the Next Largest binary searchIf you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With