I have a line with two points in latitude and longitude
A: 3.222895, 101.719751
B: 3.227511, 101.724318
and 1 point
C: 3.224972, 101.722932
How can I calculate minimum distance between point C and a line consists of point A and B? It will be convenient if you can provide the calculation and objective-c code too. The distance is around 89 meters (using ruler in Google Earth).
For this divide the values of longitude and latitude of both the points by 180/pi. The value of pi is 22/7. The value of 180/pi is approximately 57.29577951. If we want to calculate the distance between two places in miles, use the value 3, 963, which is the radius of Earth.
Latitude and longitude are a pair of numbers (coordinates) used to describe a position on the plane of a geographic coordinate system. The numbers are in decimal degrees format and range from -90 to 90 for latitude and -180 to 180 for longitude.
One degree of latitude equals approximately 364,000 feet (69 miles), one minute equals 6,068 feet (1.15 miles), and one-second equals 101 feet. One-degree of longitude equals 288,200 feet (54.6 miles), one minute equals 4,800 feet (0.91 mile), and one second equals 80 feet.
Thanks to mimi and this great article http://www.movable-type.co.uk/scripts/latlong.html but they don't give the whole picture. Here is a detail one. All this points are collected using Google Earth using Placemark to mark the locations. Make sure lat/long are set to decimal degrees in Preferences.
lat A = 3.222895
lon A = 101.719751
lat B = 3.222895
lon B = 101.719751
lat C = 3.224972
lon C = 101.722932
Earth radius, R = 6371
1. First you have to find the bearing from A to C and A to B.
Bearing formula
bearingAC = atan2( sin(Δλ)*cos(φ₂), cos(φ₁)*sin(φ₂) − sin(φ₁)*cos(φ₂)*cos(Δλ) )
bearingAB = atan2( sin(Δλ)*cos(φ₂), cos(φ₁)*sin(φ₂) − sin(φ₁)*cos(φ₂)*cos(Δλ) )
φ is latitude, λ is longitude, R is earth radius
2. Find A to C distance using spherical law of cosines
distanceAC = acos( sin(φ₁)*sin(φ₂) + cos(φ₁)*cos(φ₂)*cos(Δλ) )*R
3. Find cross-track distance
distance = asin(sin(distanceAC/ R) * sin(bearingAC − bearing AB)) * R
Objective-C code
double lat1 = 3.227511;
double lon1 = 101.724318;
double lat2 = 3.222895;
double lon2 = 101.719751;
double lat3 = 3.224972;
double lon3 = 101.722932;
double y = sin(lon3 - lon1) * cos(lat3);
double x = cos(lat1) * sin(lat3) - sin(lat1) * cos(lat3) * cos(lat3 - lat1);
double bearing1 = radiansToDegrees(atan2(y, x));
bearing1 = 360 - ((bearing1 + 360) % 360);
double y2 = sin(lon2 - lon1) * cos(lat2);
double x2 = cos(lat1) * sin(lat2) - sin(lat1) * cos(lat2) * cos(lat2 - lat1);
double bearing2 = radiansToDegrees(atan2(y2, x2));
bearing2 = 360 - ((bearing2 + 360) % 360);
double lat1Rads = degreesToRadians(lat1);
double lat3Rads = degreesToRadians(lat3);
double dLon = degreesToRadians(lon3 - lon1);
double distanceAC = acos(sin(lat1Rads) * sin(lat3Rads)+cos(lat1Rads)*cos(lat3Rads)*cos(dLon)) * 6371;
double min_distance = fabs(asin(sin(distanceAC/6371)*sin(degreesToRadians(bearing1)-degreesToRadians(bearing2))) * 6371);
NSLog(@"bearing 1: %g", bearing1);
NSLog(@"bearing 2: %g", bearing2);
NSLog(@"distance AC: %g", distanceAC);
NSLog(@"min distance: %g", min_distance);
Actually there's a library for this. You can find it here https://github.com/100grams/CoreLocationUtils
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With