A point in 3-d is defined by (x,y,z). Distance d between any two points (X,Y,Z) and (x,y,z) is d= Sqrt[(X-x)^2 + (Y-y)^2 + (Z-z)^2]. Now there are a million entries in a file, each entry is some point in space, in no specific order. Given any point (a,b,c) find the nearest 10 points to it. How would you store the million points and how would you retrieve those 10 points from that data structure.
The idea is to split the point set into two halves with a vertical line, find the closest pair within each half, and then find the closest pair between the two halves. The result of finding the closest pair within each half speeds up finding the closest pair between the halves.
Approach: The idea is to calculate the Euclidean distance from the origin for every given point and sort the array according to the Euclidean distance found. Print the first k closest points from the list. Sort the points by distance using the Euclidean distance formula. Print the points obtained in any order.
A KD Tree does the job. It's a geometric data structure that can find nearest neighbors efficiently by cutting the search space similarly to a binary search.
Million points is a small number. The most straightforward approach works here (code based on KDTree is slower (for querying only one point)).
#!/usr/bin/env python
import numpy
NDIM = 3 # number of dimensions
# read points into array
a = numpy.fromfile('million_3D_points.txt', sep=' ')
a.shape = a.size / NDIM, NDIM
point = numpy.random.uniform(0, 100, NDIM) # choose random point
print 'point:', point
d = ((a-point)**2).sum(axis=1) # compute distances
ndx = d.argsort() # indirect sort
# print 10 nearest points to the chosen one
import pprint
pprint.pprint(zip(a[ndx[:10]], d[ndx[:10]]))
Run it:
$ time python nearest.py
point: [ 69.06310224 2.23409409 50.41979143]
[(array([ 69., 2., 50.]), 0.23500677815852947),
(array([ 69., 2., 51.]), 0.39542392750839772),
(array([ 69., 3., 50.]), 0.76681859086988302),
(array([ 69., 3., 50.]), 0.76681859086988302),
(array([ 69., 3., 51.]), 0.9272357402197513),
(array([ 70., 2., 50.]), 1.1088022980015722),
(array([ 70., 2., 51.]), 1.2692194473514404),
(array([ 70., 2., 51.]), 1.2692194473514404),
(array([ 70., 3., 51.]), 1.801031260062794),
(array([ 69., 1., 51.]), 1.8636121147970444)]
real 0m1.122s
user 0m1.010s
sys 0m0.120s
Here's the script that generates million 3D points:
#!/usr/bin/env python
import random
for _ in xrange(10**6):
print ' '.join(str(random.randrange(100)) for _ in range(3))
Output:
$ head million_3D_points.txt
18 56 26
19 35 74
47 43 71
82 63 28
43 82 0
34 40 16
75 85 69
88 58 3
0 63 90
81 78 98
You could use that code to test more complex data structures and algorithms (for example, whether they actually consume less memory or faster then the above simplest approach). It is worth noting that at the moment it is the only answer that contains working code.
#!/usr/bin/env python
import numpy
NDIM = 3 # number of dimensions
# read points into array
a = numpy.fromfile('million_3D_points.txt', sep=' ')
a.shape = a.size / NDIM, NDIM
point = [ 69.06310224, 2.23409409, 50.41979143] # use the same point as above
print 'point:', point
from scipy.spatial import KDTree
# find 10 nearest points
tree = KDTree(a, leafsize=a.shape[0]+1)
distances, ndx = tree.query([point], k=10)
# print 10 nearest points to the chosen one
print a[ndx]
Run it:
$ time python nearest_kdtree.py
point: [69.063102240000006, 2.2340940900000001, 50.419791429999997]
[[[ 69. 2. 50.]
[ 69. 2. 51.]
[ 69. 3. 50.]
[ 69. 3. 50.]
[ 69. 3. 51.]
[ 70. 2. 50.]
[ 70. 2. 51.]
[ 70. 2. 51.]
[ 70. 3. 51.]
[ 69. 1. 51.]]]
real 0m1.359s
user 0m1.280s
sys 0m0.080s
// $ g++ nearest.cc && (time ./a.out < million_3D_points.txt )
#include <algorithm>
#include <iostream>
#include <vector>
#include <boost/lambda/lambda.hpp> // _1
#include <boost/lambda/bind.hpp> // bind()
#include <boost/tuple/tuple_io.hpp>
namespace {
typedef double coord_t;
typedef boost::tuple<coord_t,coord_t,coord_t> point_t;
coord_t distance_sq(const point_t& a, const point_t& b) { // or boost::geometry::distance
coord_t x = a.get<0>() - b.get<0>();
coord_t y = a.get<1>() - b.get<1>();
coord_t z = a.get<2>() - b.get<2>();
return x*x + y*y + z*z;
}
}
int main() {
using namespace std;
using namespace boost::lambda; // _1, _2, bind()
// read array from stdin
vector<point_t> points;
cin.exceptions(ios::badbit); // throw exception on bad input
while(cin) {
coord_t x,y,z;
cin >> x >> y >> z;
points.push_back(boost::make_tuple(x,y,z));
}
// use point value from previous examples
point_t point(69.06310224, 2.23409409, 50.41979143);
cout << "point: " << point << endl; // 1.14s
// find 10 nearest points using partial_sort()
// Complexity: O(N)*log(m) comparisons (O(N)*log(N) worst case for the implementation)
const size_t m = 10;
partial_sort(points.begin(), points.begin() + m, points.end(),
bind(less<coord_t>(), // compare by distance to the point
bind(distance_sq, _1, point),
bind(distance_sq, _2, point)));
for_each(points.begin(), points.begin() + m, cout << _1 << "\n"); // 1.16s
}
Run it:
g++ -O3 nearest.cc && (time ./a.out < million_3D_points.txt )
point: (69.0631 2.23409 50.4198)
(69 2 50)
(69 2 51)
(69 3 50)
(69 3 50)
(69 3 51)
(70 2 50)
(70 2 51)
(70 2 51)
(70 3 51)
(69 1 51)
real 0m1.152s
user 0m1.140s
sys 0m0.010s
#include <algorithm> // make_heap
#include <functional> // binary_function<>
#include <iostream>
#include <boost/range.hpp> // boost::begin(), boost::end()
#include <boost/tr1/tuple.hpp> // get<>, tuple<>, cout <<
namespace {
typedef double coord_t;
typedef std::tr1::tuple<coord_t,coord_t,coord_t> point_t;
// calculate distance (squared) between points `a` & `b`
coord_t distance_sq(const point_t& a, const point_t& b) {
// boost::geometry::distance() squared
using std::tr1::get;
coord_t x = get<0>(a) - get<0>(b);
coord_t y = get<1>(a) - get<1>(b);
coord_t z = get<2>(a) - get<2>(b);
return x*x + y*y + z*z;
}
// read from input stream `in` to the point `point_out`
std::istream& getpoint(std::istream& in, point_t& point_out) {
using std::tr1::get;
return (in >> get<0>(point_out) >> get<1>(point_out) >> get<2>(point_out));
}
// Adaptable binary predicate that defines whether the first
// argument is nearer than the second one to given reference point
template<class T>
class less_distance : public std::binary_function<T, T, bool> {
const T& point;
public:
less_distance(const T& reference_point) : point(reference_point) {}
bool operator () (const T& a, const T& b) const {
return distance_sq(a, point) < distance_sq(b, point);
}
};
}
int main() {
using namespace std;
// use point value from previous examples
point_t point(69.06310224, 2.23409409, 50.41979143);
cout << "point: " << point << endl;
const size_t nneighbours = 10; // number of nearest neighbours to find
point_t points[nneighbours+1];
// populate `points`
for (size_t i = 0; getpoint(cin, points[i]) && i < nneighbours; ++i)
;
less_distance<point_t> less_distance_point(point);
make_heap (boost::begin(points), boost::end(points), less_distance_point);
// Complexity: O(N*log(m))
while(getpoint(cin, points[nneighbours])) {
// add points[-1] to the heap; O(log(m))
push_heap(boost::begin(points), boost::end(points), less_distance_point);
// remove (move to last position) the most distant from the
// `point` point; O(log(m))
pop_heap (boost::begin(points), boost::end(points), less_distance_point);
}
// print results
push_heap (boost::begin(points), boost::end(points), less_distance_point);
// O(m*log(m))
sort_heap (boost::begin(points), boost::end(points), less_distance_point);
for (size_t i = 0; i < nneighbours; ++i) {
cout << points[i] << ' ' << distance_sq(points[i], point) << '\n';
}
}
Run it:
$ g++ -O3 nearest.cc && (time ./a.out < million_3D_points.txt )
point: (69.0631 2.23409 50.4198)
(69 2 50) 0.235007
(69 2 51) 0.395424
(69 3 50) 0.766819
(69 3 50) 0.766819
(69 3 51) 0.927236
(70 2 50) 1.1088
(70 2 51) 1.26922
(70 2 51) 1.26922
(70 3 51) 1.80103
(69 1 51) 1.86361
real 0m1.174s
user 0m1.180s
sys 0m0.000s
// $ g++ -O3 nearest.cc && (time ./a.out < million_3D_points.txt )
#include <algorithm> // sort
#include <functional> // binary_function<>
#include <iostream>
#include <boost/foreach.hpp>
#include <boost/range.hpp> // begin(), end()
#include <boost/tr1/tuple.hpp> // get<>, tuple<>, cout <<
#define foreach BOOST_FOREACH
namespace {
typedef double coord_t;
typedef std::tr1::tuple<coord_t,coord_t,coord_t> point_t;
// calculate distance (squared) between points `a` & `b`
coord_t distance_sq(const point_t& a, const point_t& b);
// read from input stream `in` to the point `point_out`
std::istream& getpoint(std::istream& in, point_t& point_out);
// Adaptable binary predicate that defines whether the first
// argument is nearer than the second one to given reference point
class less_distance : public std::binary_function<point_t, point_t, bool> {
const point_t& point;
public:
explicit less_distance(const point_t& reference_point)
: point(reference_point) {}
bool operator () (const point_t& a, const point_t& b) const {
return distance_sq(a, point) < distance_sq(b, point);
}
};
}
int main() {
using namespace std;
// use point value from previous examples
point_t point(69.06310224, 2.23409409, 50.41979143);
cout << "point: " << point << endl;
less_distance nearer(point);
const size_t nneighbours = 10; // number of nearest neighbours to find
point_t points[nneighbours];
// populate `points`
foreach (point_t& p, points)
if (! getpoint(cin, p))
break;
// Complexity: O(N*m)
point_t current_point;
while(cin) {
getpoint(cin, current_point); //NOTE: `cin` fails after the last
//point, so one can't lift it up to
//the while condition
// move to the last position the most distant from the
// `point` point; O(m)
foreach (point_t& p, points)
if (nearer(current_point, p))
// found point that is nearer to the `point`
//NOTE: could use insert (on sorted sequence) & break instead
//of swap but in that case it might be better to use
//heap-based algorithm altogether
std::swap(current_point, p);
}
// print results; O(m*log(m))
sort(boost::begin(points), boost::end(points), nearer);
foreach (point_t p, points)
cout << p << ' ' << distance_sq(p, point) << '\n';
}
namespace {
coord_t distance_sq(const point_t& a, const point_t& b) {
// boost::geometry::distance() squared
using std::tr1::get;
coord_t x = get<0>(a) - get<0>(b);
coord_t y = get<1>(a) - get<1>(b);
coord_t z = get<2>(a) - get<2>(b);
return x*x + y*y + z*z;
}
std::istream& getpoint(std::istream& in, point_t& point_out) {
using std::tr1::get;
return (in >> get<0>(point_out) >> get<1>(point_out) >> get<2>(point_out));
}
}
Measurements shows that most of the time is spent reading array from the file, actual computations take on order of magnitude less time.
If the million entries are already in a file, there's no need to load them all into a data structure in memory. Just keep an array with the top-ten points found so far, and scan over the million points, updating your top-ten list as you go.
This is O(n) in the number of points.
You could store the points in a k-dimensional tree (kd-tree). Kd-trees are optimized for nearest-neighbor searches (finding the n points closest to a given point).
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With