Im using PuLP to solve some minimization problems with constraints, uper and low bounds. It is very easy and clean.
But im needing to use only the Scipy and Numpy modules.
I was reading: http://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html
Constrained minimization of multivariate scalar functions
But im a bit lost... some good soul can post a small example like this PuLP one in Scipy?
Thanks in advance. MM
from pulp import *
'''
Minimize 1.800A + 0.433B + 0.180C
Constraint 1A + 1B + 1C = 100
Constraint 0.480A + 0.080B + 0.020C >= 24
Constraint 0.744A + 0.800B + 0.142C >= 76
Constraint 1C <= 2
'''
...
Consider the following:
import numpy as np
import scipy.optimize as opt
#Some variables
cost = np.array([1.800, 0.433, 0.180])
p = np.array([0.480, 0.080, 0.020])
e = np.array([0.744, 0.800, 0.142])
#Our function
fun = lambda x: np.sum(x*cost)
#Our conditions
cond = ({'type': 'eq', 'fun': lambda x: np.sum(x) - 100},
{'type': 'ineq', 'fun': lambda x: np.sum(p*x) - 24},
{'type': 'ineq', 'fun': lambda x: np.sum(e*x) - 76},
{'type': 'ineq', 'fun': lambda x: -1*x[2] + 2})
bnds = ((0,100),(0,100),(0,100))
guess = [20,30,50]
opt.minimize(fun, guess, method='SLSQP', bounds=bnds, constraints = cond)
It should be noted that eq
conditions should be equal to zero, while ineq
functions will return true for any values greater then zero.
We obtain:
status: 0
success: True
njev: 4
nfev: 21
fun: 97.884100000000345
x: array([ 40.3, 57.7, 2. ])
message: 'Optimization terminated successfully.'
jac: array([ 1.80000019, 0.43300056, 0.18000031, 0. ])
nit: 4
Double check the equalities:
output = np.array([ 40.3, 57.7, 2. ])
np.sum(output) == 100
True
round(np.sum(p*output),8) >= 24
True
round(np.sum(e*output),8) >= 76
True
The rounding comes from double point precision errors:
np.sum(p*output)
23.999999999999996
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With