I'm writing a MOS 6502 processor emulator as part of a larger project I've undertaken in my spare time. The emulator is written in Java, and before you say it, I know its not going to be as efficient and optimized as if it was written in c or assembly, but the goal is to make it run on various platforms and its pulling 2.5MHZ on a 1GHZ processor which is pretty good for an interpreted emulator. My problem is quite to the contrary, I need to limit the number of cycles to 1MHZ. Ive looked around but not seen many strategies for doing this. Ive tried a few things including checking the time after a number of cycles and sleeping for the difference between the expected time and the actual time elapsed, but checking the time slows down the emulation by a factor of 8 so does anyone have any better suggestions or perhaps ways to optimize time polling in java to reduce the slowdown?
The problem with using sleep() is that you generally only get a granularity of 1ms, and the actual sleep that you will get isn't necessarily even accurate to the nearest 1ms as it depends on what the rest of the system is doing. A couple of suggestions to try (off the top of my head-- I've not actually written a CPU emulator in Java):
stick to your idea, but check the time between a large-ish number of emulated instructions (execution is going to be a bit "lumpy" anyway especially on a uniprocessor machine, because the OS can potentially take away the CPU from your thread for several milliseconds at a time);
as you want to execute in the order of 1000 emulated instructions per millisecond, you could also try just hanging on to the CPU between "instructions": have your program periodically work out by trial and error how many runs through a loop it needs to go between instructions to "waste" enough CPU to make the timing work out at 1 million emulated instructions / sec on average (you may want to see if setting your thread to low priority helps system performance in this case).
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With