what would be the fastest way to merge a list of numpy arrays into one array if one knows the length of the list and the size of the arrays, which is the same for all?
I tried two approaches:
merged_array = array(list_of_arrays)
from Pythonic way to create a numpy array from a list of numpy arrays and
vstack
A you can see vstack
is faster, but for some reason the first run takes three times longer than the second. I assume this caused by (missing) preallocation. So how would I preallocate an array for vstack
? Or do you know a faster methode?
Thanks!
[UPDATE]
I want (25280, 320)
not (80, 320, 320)
which means, merged_array = array(list_of_arrays)
wont work for me. Thanks Joris for pointing that out!!!
Output:
0.547468900681 s merged_array = array(first_list_of_arrays) 0.547191858292 s merged_array = array(second_list_of_arrays) 0.656183958054 s vstack first 0.236850976944 s vstack second
Code:
import numpy import time width = 320 height = 320 n_matrices=80 secondmatrices = list() for i in range(n_matrices): temp = numpy.random.rand(height, width).astype(numpy.float32) secondmatrices.append(numpy.round(temp*9)) firstmatrices = list() for i in range(n_matrices): temp = numpy.random.rand(height, width).astype(numpy.float32) firstmatrices.append(numpy.round(temp*9)) t1 = time.time() first1=numpy.array(firstmatrices) print time.time() - t1, "s merged_array = array(first_list_of_arrays)" t1 = time.time() second1=numpy.array(secondmatrices) print time.time() - t1, "s merged_array = array(second_list_of_arrays)" t1 = time.time() first2 = firstmatrices.pop() for i in range(len(firstmatrices)): first2 = numpy.vstack((firstmatrices.pop(),first2)) print time.time() - t1, "s vstack first" t1 = time.time() second2 = secondmatrices.pop() for i in range(len(secondmatrices)): second2 = numpy.vstack((secondmatrices.pop(),second2)) print time.time() - t1, "s vstack second"
You have 80 arrays 320x320? So you probably want to use dstack
:
first3 = numpy.dstack(firstmatrices)
This returns one 80x320x320 array just like numpy.array(firstmatrices)
does:
timeit numpy.dstack(firstmatrices) 10 loops, best of 3: 47.1 ms per loop timeit numpy.array(firstmatrices) 1 loops, best of 3: 750 ms per loop
If you want to use vstack
, it will return a 25600x320 array:
timeit numpy.vstack(firstmatrices) 100 loops, best of 3: 18.2 ms per loop
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With