I have two table like that:
Customr Issue Date_Issue
1 1 01/01/2019
1 2 03/06/2019
1 3 04/07/2019
1 4 13/09/2019
2 5 01/02/2019
2 6 16/03/2019
2 7 20/08/2019
2 8 30/08/2019
2 9 01/09/2019
3 10 01/02/2019
3 11 03/02/2019
3 12 05/03/2019
3 13 20/04/2019
3 14 25/04/2019
3 15 13/05/2019
3 16 20/05/2019
3 17 25/05/2019
3 18 01/06/2019
3 19 03/07/2019
3 20 20/08/2019
Customr Date_Survey df_Score
1 06/04/2019 10
2 10/06/2019 9
3 01/08/2019 3
And I need to obtain the number of issues of each customer in the three month before the date of survey.
But I can not get this query in Pandas.
#first table
index_survey = [0,1,2]
Customer_Survey = pd.Series([1,2,3],index= index_survey)
Date_Survey = pd.Series(["06/04/2019","10/06/2019","01/08/2019"])
df_Score=[10, 9, 3]
df_survey = pd.DataFrame(Customer_Survey,columns = ["Customer_Survey"])
df_survey["Date_Survey"] =Date_Survey
df_survey["df_Score"] =df_Score
#And second table
index_survey = [0,1,2]
Customer_Survey = pd.Series([1,2,3],index= index_survey)
Date_Survey = pd.Series(["06/04/2019","10/06/2019","01/08/2019"])
df_Score=[10, 9, 3]
df_survey = pd.DataFrame(Customer_Survey,columns = ["Customer_Survey"])
df_survey["Date_Survey"] =Date_Survey
df_survey["df_Score"] =df_Score
I expect the result
Custr Date_Survey Score Count_issues
1 06/04/2019 10 0
2 10/06/2019 9 1
3 01/08/2019 3 5
Use:
#convert columns to datetimes
df1['Date_Issue'] = pd.to_datetime(df1['Date_Issue'], dayfirst=True)
df2['Date_Survey'] = pd.to_datetime(df2['Date_Survey'], dayfirst=True)
#create datetimes for 3 months before
df2['Date1'] = df2['Date_Survey'] - pd.offsets.DateOffset(months=3)
#merge together
df = df1.merge(df2, on='Customr')
#filter by between, select only Customr and get counts
s = df.loc[df['Date_Issue'].between(df['Date1'], df['Date_Survey']), 'Customr'].value_counts()
#map to new column and replace NaNs to 0
df2['Count_issues'] = df2['Customr'].map(s).fillna(0, downcast='int')
print (df2)
Customr Date_Survey df_Score Date1 Count_issues
0 1 2019-04-06 10 2019-01-06 0
1 2 2019-06-10 9 2019-03-10 1
2 3 2019-08-01 3 2019-05-01 5
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With