I need help to minimize the memory leak suspected code .
I am using Keras latest with tensorflow 1.8.0 and python 3.6
When the program start its gradually growing to giganytes..!! need help here.
I am using VGG16 net for categorization to images. I couldnt localize the problem which causes the memory leaks.
Is it tensorflow bug or python suffering from such jobs
code is:
class_labels = ['cc','','cc','xx']
image = load_img(img_path, target_size=target_size)
image_arr = img_to_array(image) # convert from PIL Image to NumPy array
image_arr /= 255
image_arr = np.expand_dims(image_arr, axis=0)
model = applications.VGG16(include_top=False, weights='imagenet')
bottleneck_features = model.predict(image_arr)
model = create_top_model("softmax", bottleneck_features.shape[1:])
model.load_weights("res/_top_model_weights.h5")
numpy_horizontal_concat = cv2.imread(img_path)
xxx=1
path ="/home/dataset/test"
listOfFiles = os.listdir(path)
random.shuffle(listOfFiles)
pattern = "*.jpg"
model = applications.VGG16(include_top=False, weights='imagenet')
for entry in listOfFiles:
if fnmatch.fnmatch(entry, pattern):
image = load_img(path+"/"+ entry, target_size=target_size)
start_time = time.time()
image_arr = img_to_array(image) # convert from PIL Image to NumPy array
image_arr /= 255
image_arr = np.expand_dims(image_arr, axis=0)
bottleneck_features = model.predict(image_arr)
model2 = create_top_model("softmax", bottleneck_features.shape[1:])
model2.load_weights("res/_top_model_weights.h5")
predicted = model2.predict(bottleneck_features)
decoded_predictions = dict(zip(class_labels, predicted[0]))
decoded_predictions = sorted(decoded_predictions.items(), key=operator.itemgetter(1), reverse=True)
elapsed_time = time.time() - start_time
print()
count = 1
for key, value in decoded_predictions[:5]:
print("{}. {}: {:8f}%".format(count, key, value * 100))
print("time: " , time.strftime("%H:%M:%S", time.gmtime(elapsed_time)) , " - " , elapsed_time)
count += 1
#OPENCV concat test
#numpy_horizontal_concat = np.concatenate((mat_image,numpy_horizontal_concat), axis=0)
hide_img = True
model2=""
predicted=""
image_arr=""
image=""
Inside your for loop you build a new model with loaded weights. This model is build inside your tensorflow session, which you don't reset. So you session is build up with many models without deleting a single one.
There are 2 possible solutions:
I strongly recommend to use the first solution but if this isn't possible:
from keras import backend as K
K.clear_session()
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With