I just started learning go, while going through slice tricks, couple of points are very confusing. can any one help me to clarify.
To cut elements in slice its given
Approach 1:
a = append(a[:i], a[j:]...)
but there is a note given that it may cause to memory leaks if pointers are used and recommended way is
Approach 2:
copy(a[i:], a[j:])
for k, n := len(a)-j+i, len(a); k < n; k++ {
a[k] = nil // or the zero value of T
}
a = a[:len(a)-j+i]
Can any one help me understand how memory leaks happen. I understood sub slice will be backed by the main array. My thought is irrespective of pointer or not we have to follow approach 2 always.
update after @icza and @Volker answer..
Lets say you have a struct
type Books struct {
title string
author string
}
var Book1 Books
var Book2 Books
/* book 1 specification */
Book1.title = "Go Programming"
Book1.author = "Mahesh Kumar"
Book2.title = "Go Programming"
Book2.author = "Mahesh Kumar"
var bkSlice = []Books{Book1, Book2}
var bkprtSlice = []*Books{&Book1, &Book2}
now doing
bkSlice = bkSlice[:1]
bkSlice still holds the Book2 in backing array which is still in memory and is not required to be. so do we need to do
bkSlice[1] = Books{}
so that it will be GCed. I understood pointers have to be nil-ed as the slice will hold unnecessary references to the objects outside backing array.
Simplest can be demonstrated by a simple slice expression.
Let's start with a slice of *int
pointers:
s := []*int{new(int), new(int)}
This slice has a backing array with a length of 2, and it contains 2 non-nil
pointers, pointing to allocated integers (outside of the backing array).
Now if we reslice this slice:
s = s[:1]
Length will become 1
. The backing array (holding 2 pointers) is not touched, it sill holds 2 valid pointers. Even though we don't use the 2nd pointer now, since it is in memory (it is the backing array), the pointed object (which is a memory space for storing an int
value) cannot be freed by the garbage collector.
The same thing happens if you "cut" multiple elements from the middle. If the original slice (and its backing array) was filled with non-nil
pointers, and if you don't zero them (with nil
), they will be kept in memory.
Why isn't this an issue with non-pointers?
Actually, this is an issue with all pointer and "header" types (like slices and strings), not just pointers.
If you would have a slice of type []int
instead of []*int
, then slicing it will just "hide" elements that are of int
type which must stay in memory as part of the backing array regardless of if there's a slice that contains it or not. The elements are not references to objects stored outside of the array, while pointers refer to objects being outside of the array.
If the slice contains pointers and you nil
them before the slicing operation, if there are no other references to the pointed objects (if the array was the only one holding the pointers), they can be freed, they will not be kept due to still having a slice (and thus the backing array).
Update:
When you have a slice of structs:
var bkSlice = []Books{Book1, Book2}
If you slice it like:
bkSlice = bkSlice[:1]
Book2
will become unreachabe via bkSlice
, but still will be in memory (as part of the backing array).
You can't nil
it because nil
is not a valid value for structs. You can however assign its zero value to it like this:
bkSlice[1] = Book{}
bkSlice = bkSlice[:1]
Note that a Books
struct value will still be in memory, being the second element of the backing array, but that struct will be a zero value, and thus will not hold string references, thus the original book author and title strings can be garbage collected (if no one else references them; more precisely the byte slice referred from the string header).
The general rule is "recursive": You only need to zero elements that refer to memory located outside of the backing array. So if you have a slice of structs that only have e.g. int
fields, you do not need to zero it, in fact it's just unnecessary extra work. If the struct has fields that are pointers, or slices, or e.g. other struct type that have pointers or slices etc., then you should zero it in order to remove the reference to the memory outside of the backing array.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With