I have the following (snippet) of a kernel.
__global__ void plain(int* geneVec, float* probs, int* nComponents, float* randomNumbers,int *nGenes)
{
int xid = threadIdx.x + (blockDim.x * blockIdx.x);
float* currentProbs= (float*)malloc(sizeof(float)*tmp);
.....
.....
currentProbs[0] = probs[start];
for (k=1;k<nComponents[0]; k++)
{
currentProbs[k] = currentProbs[k-1] + prob;
}
...
...
free(currentProbs);
}
When it's static (even the same sizes) it's very fast, but when CurrentProbs is dynamically allocated (as above) performance is awful.
This question said I could do this inside a kernel: CUDA allocate memory in __device__ function
Here is a related question: Efficiency of Malloc function in CUDA
I was wondering if any other methods have solved this other than the one proposed in the paper? It seems ridiculous that one cannot malloc/free inside a kernel without this sort of penalty.
I think the reason introducing malloc() slows your code down is that it allocates memory in global memory. When you use a fixed size array, the compiler is likely to put it in the register file, which is much faster.
Having to do a malloc inside your kernel may mean that you're trying to do too much work with a single kernel. If each thread allocates a different amount of memory, then each thread runs a different number of times in the for loop, and you get lots of warp divergence.
If each thread in a warp runs loops the same number of times, just allocate up front. Even if they run a different number of times, you can use a constant size. But instead, I think you should look at how you can refactor your code to entirely remove that loop from your kernel.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With