In an interview one of my friends was asked to find the subarray of an array with maximum sum, this my solution to the problem , how can I improve the solution make it more optimal , should i rather consider doing in a recursive fashion ?
def get_max_sum_subset(x):
max_subset_sum = 0
max_subset_i = 0
max_subset_j = 0
for i in range(0,len(x)+1):
for j in range(i+1,len(x)+1):
current_sum = sum(x[i:j])
if current_sum > max_subset_sum:
max_subset_sum = current_sum
max_subset_i = i
max_subset_j = j
return max_subset_sum,max_subset_i,max_subset_j
Your solution is O(n^2). The optimal solution is linear. It works so that you scan the array from left to right, taking note of the best sum and the current sum:
def get_max_sum_subset(x):
bestSoFar = 0
bestNow = 0
bestStartIndexSoFar = -1
bestStopIndexSoFar = -1
bestStartIndexNow = -1
for i in xrange(len(x)):
value = bestNow + x[i]
if value > 0:
if bestNow == 0:
bestStartIndexNow = i
bestNow = value
else:
bestNow = 0
if bestNow > bestSoFar:
bestSoFar = bestNow
bestStopIndexSoFar = i
bestStartIndexSoFar = bestStartIndexNow
return bestSoFar, bestStartIndexSoFar, bestStopIndexSoFar
This problem was also discussed thourougly in Programming Pearls: Algorithm Design Techniques (highly recommended). There you can also find a recursive solution, which is not optimal (O(n log n)), but better than O(n^2).
This is a well-known problem that displays overlapping optimal substructure, which suggests a dynamic programming (DP) solution. Although DP solutions are usually quite tricky (I think so at least!), this one is a great example to get introduced to the whole concept.
The first thing to note is that the maximal subarray (which must be a contiguous portion of the given array A) ending at position j either consists of the maximimal subarray ending at position j-1 plus A[j], or is empty (this only occurs if A[j] < 0). In other words, we are asking whether the element A[j] is contributing positively to the current maximum sum ending at position j-1. If yes, include it in the maximal subarray so far; if not, don't. Thus, from solving smaller subproblems that overlap we can build up an optimal solution.
The sum of the maximal subarray ending at position j can then be given recursively by the following relation:
sum[0] = max(0, A[0])
sum[j] = max(0, sum[j-1] + A[j])
We can build up these answers in a bottom-up fashion by scanning A from left to right. We update sum[j] as we consider A[j]. We can keep track of the overall maximum value and the location of the maximal subarray through this process as well. Here is a quick solution I wrote up in Ruby:
def max_subarray(a)
sum = [0]
max, head, tail = sum[0], -1, -1
cur_head = 0
(0...a.size).each do |j|
# base case included below since sum[-1] = sum[0]
sum[j] = [0, sum[j-1] + a[j]].max
cur_head = j if sum[j-1] == 0
if sum[j] > max
max, head, tail = sum[j], cur_head, j
end
end
return max, head, tail
end
Take a look at my gist if you'd like to test this for yourself.
This is clearly a linear O(N) algorithm since only one pass through the list is required. Hope this helps!
let n
- elements count, a(i)
- your array f(i)
- maximum sum of subarray that ends at position i
(minimum length is 1). Then:
f(0) = a(i);
f(i) = max(f(i-1), 0) + a(i); //f(i-1) when we continue subarray, or 0 - when start at i position
max(0, f(1), f(2), ... , f(n-1))
- the answer
A much better solution approach can be derived by thinking about what conditions must hold for a maximum-sum sub-array: the first item on either end that is not included (if any) must be negative and the last item on either end that is included must be non-negative. You don't need to consider any other end points for the sub-array except where these changes occur in the original data.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With