I have a dataframe that looks like:
data = {'index': ['2014-06-22 10:46:00', '2014-06-24 19:52:00', '2014-06-25 17:02:00', '2014-06-25 17:55:00', '2014-07-02 11:36:00', '2014-07-06 12:40:00', '2014-07-05 12:46:00', '2014-07-27 15:12:00'], 'type': ['A', 'B', 'C', 'A', 'B', 'C', 'A', 'C'], 'sum_col': [1, 2, 3, 1, 1, 3, 2, 1]} df = pd.DataFrame(data, columns=['index', 'type', 'sum_col']) df['index'] = pd.to_datetime(df['index']) df = df.set_index('index') df['weekofyear'] = df.index.weekofyear df['date'] = df.index.date df['date'] = pd.to_datetime(df['date']) type sum_col weekofyear date index 2014-06-22 10:46:00 A 1 25 2014-06-22 2014-06-24 19:52:00 B 2 26 2014-06-24 2014-06-25 17:02:00 C 3 26 2014-06-25 2014-06-25 17:55:00 A 1 26 2014-06-25 2014-07-02 11:36:00 B 1 27 2014-07-02 2014-07-06 12:40:00 C 3 27 2014-07-06 2014-07-05 12:46:00 A 2 27 2014-07-05 2014-07-27 15:12:00 C 1 30 2014-07-27
I'm looking to groupby the weekofyear, then sum up the sum_col. In addition, I need to find the earliest, and the latest date for the week. The first part is pretty easy:
gb = df.groupby(['type', 'weekofyear']) gb['sum_col'].agg({'sum_col' : np.sum})
I've tried to find the min/max date with this, but haven't been successful:
gb = df.groupby(['type', 'weekofyear']) gb.agg({'sum_col' : np.sum, 'date' : np.min, 'date' : np.max})
How would one find the earliest/latest date that appears?
max. Compute max of group values. Include only float, int, boolean columns.
You need to combine the functions that apply to the same column, like this:
In [116]: gb.agg({'sum_col' : np.sum, ...: 'date' : [np.min, np.max]}) Out[116]: date sum_col amin amax sum type weekofyear A 25 2014-06-22 2014-06-22 1 26 2014-06-25 2014-06-25 1 27 2014-07-05 2014-07-05 2 B 26 2014-06-24 2014-06-24 2 27 2014-07-02 2014-07-02 1 C 26 2014-06-25 2014-06-25 3 27 2014-07-06 2014-07-06 3 30 2014-07-27 2014-07-27 1
Simple code can be
df.groupby([key_field]).agg({'time_field': [np.min,np.max]})
where key_field here can be event_id and time_field can be timestamp field.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With