I have an NxM matrix in MATLAB that I would like to reorder in similar fashion to the way JPEG reorders its subblock pixels:
(image from Wikipedia)
I would like the algorithm to be generic such that I can pass in a 2D matrix with any dimensions. I am a C++ programmer by trade and am very tempted to write an old school loop to accomplish this, but I suspect there is a better way to do it in MATLAB.
I'd be rather want an algorithm that worked on an NxN
matrix and go from there.
1 2 3
4 5 6 --> 1 2 4 7 5 3 6 8 9
7 8 9
Consider the code:
M = randi(100, [3 4]); %# input matrix
ind = reshape(1:numel(M), size(M)); %# indices of elements
ind = fliplr( spdiags( fliplr(ind) ) ); %# get the anti-diagonals
ind(:,1:2:end) = flipud( ind(:,1:2:end) ); %# reverse order of odd columns
ind(ind==0) = []; %# keep non-zero indices
M(ind) %# get elements in zigzag order
An example with a 4x4 matrix:
» M
M =
17 35 26 96
12 59 51 55
50 23 70 14
96 76 90 15
» M(ind)
ans =
17 35 12 50 59 26 96 51 23 96 76 70 55 14 90 15
and an example with a non-square matrix:
M =
69 9 16 100
75 23 83 8
46 92 54 45
ans =
69 9 75 46 23 16 100 83 92 54 8 45
This approach is pretty fast:
X = randn(500,2000); %// example input matrix
[r, c] = size(X);
M = bsxfun(@plus, (1:r).', 0:c-1);
M = M + bsxfun(@times, (1:r).'/(r+c), (-1).^M);
[~, ind] = sort(M(:));
y = X(ind).'; %'// output row vector
The following code compares running time with that of Amro's excellent answer, using timeit
. It tests different combinations of matrix size (number of entries) and matrix shape (number of rows to number of columns ratio).
%// Amro's approach
function y = zigzag_Amro(M)
ind = reshape(1:numel(M), size(M));
ind = fliplr( spdiags( fliplr(ind) ) );
ind(:,1:2:end) = flipud( ind(:,1:2:end) );
ind(ind==0) = [];
y = M(ind);
%// Luis' approach
function y = zigzag_Luis(X)
[r, c] = size(X);
M = bsxfun(@plus, (1:r).', 0:c-1);
M = M + bsxfun(@times, (1:r).'/(r+c), (-1).^M);
[~, ind] = sort(M(:));
y = X(ind).';
%// Benchmarking code:
S = [10 30 100 300 1000 3000]; %// reference to generate matrix size
f = [1 1]; %// number of cols is S*f(1); number of rows is S*f(2)
%// f = [0.5 2]; %// plotted with '--'
%// f = [2 0.5]; %// plotted with ':'
t_Amro = NaN(size(S));
t_Luis = NaN(size(S));
for n = 1:numel(S)
X = rand(f(1)*S(n), f(2)*S(n));
f_Amro = @() zigzag_Amro(X);
f_Luis = @() zigzag_Luis(X);
t_Amro(n) = timeit(f_Amro);
t_Luis(n) = timeit(f_Luis);
end
loglog(S.^2*prod(f), t_Amro, '.b-');
hold on
loglog(S.^2*prod(f), t_Luis, '.r-');
xlabel('number of matrix entries')
ylabel('time')
The figure below has been obtained with Matlab R2014b on Windows 7 64 bits. Results in R2010b are very similar. It is seen that the new approach reduces running time by a factor between 2.5 (for small matrices) and 1.4 (for large matrices). Results are seen to be almost insensitive to matrix shape, given a total number of entries.
Here's a non-loop solution zig_zag.m
. It looks ugly but it works!:
function [M,index] = zig_zag(M)
[r,c] = size(M);
checker = rem(hankel(1:r,r-1+(1:c)),2);
[rEven,cEven] = find(checker);
[cOdd,rOdd] = find(~checker.'); %'#
rTotal = [rEven; rOdd];
cTotal = [cEven; cOdd];
[junk,sortIndex] = sort(rTotal+cTotal);
rSort = rTotal(sortIndex);
cSort = cTotal(sortIndex);
index = sub2ind([r c],rSort,cSort);
M = M(index);
end
And a test matrix:
>> M = [magic(4) zeros(4,1)];
M =
16 2 3 13 0
5 11 10 8 0
9 7 6 12 0
4 14 15 1 0
>> newM = zig_zag(M) %# Zig-zag sampled elements
newM =
16
2
5
9
11
3
13
10
7
4
14
6
8
0
0
12
15
1
0
0
Here's a way how to do this. Basically, your array is a hankel matrix plus vectors of 1:m, where m is the number of elements in each diagonal. Maybe someone else has a neat idea on how to create the diagonal arrays that have to be added to the flipped hankel array without a loop.
I think this should be generalizeable to a non-square array.
% for a 3x3 array
n=3;
numElementsPerDiagonal = [1:n,n-1:-1:1];
hadaRC = cumsum([0,numElementsPerDiagonal(1:end-1)]);
array2add = fliplr(hankel(hadaRC(1:n),hadaRC(end-n+1:n)));
% loop through the hankel array and add numbers counting either up or down
% if they are even or odd
for d = 1:(2*n-1)
if floor(d/2)==d/2
% even, count down
array2add = array2add + diag(1:numElementsPerDiagonal(d),d-n);
else
% odd, count up
array2add = array2add + diag(numElementsPerDiagonal(d):-1:1,d-n);
end
end
% now flip to get the result
indexMatrix = fliplr(array2add)
result =
1 2 6
3 5 7
4 8 9
Afterward, you just call reshape(image(indexMatrix),[],1)
to get the vector of reordered elements.
EDIT
Ok, from your comment it looks like you need to use sort
like Marc suggested.
indexMatrixT = indexMatrix'; % ' SO formatting
[dummy,sortedIdx] = sort(indexMatrixT(:));
sortedIdx =
1 2 4 7 5 3 6 8 9
Note that you'd need to transpose your input matrix first before you index, because Matlab counts first down, then right.
Assuming X
to be the input 2D matrix and that is square
or landscape-shaped
, this seems to be pretty efficient -
[m,n] = size(X);
nlim = m*n;
n = n+mod(n-m,2);
mask = bsxfun(@le,[1:m]',[n:-1:1]);
start_vec = m:m-1:m*(m-1)+1;
a = bsxfun(@plus,start_vec',[0:n-1]*m);
offset_startcol = 2- mod(m+1,2);
[~,idx] = min(mask,[],1);
idx = idx - 1;
idx(idx==0) = m;
end_ind = a([0:n-1]*m + idx);
offsets = a(1,offset_startcol:2:end) + end_ind(offset_startcol:2:end);
a(:,offset_startcol:2:end) = bsxfun(@minus,offsets,a(:,offset_startcol:2:end));
out = a(mask);
out2 = m*n+1 - out(end:-1:1+m*(n-m+1));
result = X([out2 ; out(out<=nlim)]);
Quick runtime tests against Luis's approach -
Datasize: 500 x 2000
------------------------------------- With Proposed Approach
Elapsed time is 0.037145 seconds.
------------------------------------- With Luis Approach
Elapsed time is 0.045900 seconds.
Datasize: 5000 x 20000
------------------------------------- With Proposed Approach
Elapsed time is 3.947325 seconds.
------------------------------------- With Luis Approach
Elapsed time is 6.370463 seconds.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With