I've come across an oddity that the internet hasn't been able to solve so far. If I read in a .png file, then try to show it, it works perfectly (in the example below the file is a single blue pixel). However, if I try to create this image array manually, it just shows a blank canvas. Any thoughts?
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
im = Image.open('dot.png') # A single blue pixel
im1 = np.asarray(im)
print im1
# [[[ 0 162 232 255]]]
plt.imshow(im1, interpolation='nearest')
plt.show() # Works fine
npArray = np.array([[[0, 162, 232, 255]]])
plt.imshow(npArray, interpolation='nearest')
plt.show() # Blank canvas
npArray = np.array([np.array([np.array([0, 162, 232, 255])])])
plt.imshow(npArray, interpolation='nearest')
plt.show() # Blank canvas
P.S. I've also tried replacing all of the np.array() with np.asarray(), but the outcome is just the same.
According to the im.show
docs:
X : array_like, shape (n, m) or (n, m, 3) or (n, m, 4)
Display the image in `X` to current axes. `X` may be a float
array, a uint8 array or a PIL image.
So X
may be an array with dtype uint8
.
When you don't specify a dtype,
In [63]: np.array([[[0, 162, 232, 255]]]).dtype
Out[63]: dtype('int64')
NumPy may create an array of dtype int64
or int32
(not uint8
) by default.
If you specify dtype='uint8'
explicitly, then
import matplotlib.pyplot as plt
import numpy as np
npArray = np.array([[[0, 162, 232, 255]]], dtype='uint8')
plt.imshow(npArray, interpolation='nearest')
plt.show()
yields
PS. If you check
im = Image.open('dot.png') # A single blue pixel
im1 = np.asarray(im)
print(im1.dtype)
you'll find im1.dtype
is uint8
too.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With