Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Matplotlib imshow/matshow display values on plot

I am trying to create a 10x10 grid using either imshow or matshow in Matplotlib. The function below takes a numpy array as input, and plots the grid. However, I'd like to have values from the array also displayed inside the cells defined by the grid. So far I could not find a proper way to do it. I can use plt.text to place things over the grid, but this requires coordinates of each cell, totally inconvenient. Is there a better way to do what I am trying to accomplish?

Thanks!

NOTE: The code below does not take the values from the array yet, I was just playing with plt.text.

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import colors

board = np.zeros((10, 10))

def visBoard(board):
   cmap = colors.ListedColormap(['white', 'red'])
   bounds=[0,0.5,1]
   norm = colors.BoundaryNorm(bounds, cmap.N)
   plt.figure(figsize=(4,4))
   plt.matshow(board, cmap=cmap, norm=norm, interpolation='none', vmin=0, vmax=1)
   plt.xticks(np.arange(0.5,10.5), [])
   plt.yticks(np.arange(0.5,10.5), [])
   plt.text(-0.1, 0.2, 'x')
   plt.text(0.9, 0.2, 'o')
   plt.text(1.9, 0.2, 'x')
   plt.grid()

   visBoard(board)

Output:

enter image description here

like image 615
marillion Avatar asked Feb 11 '14 20:02

marillion


People also ask

Does Imshow normalize?

By default, imshow normalizes the data to its min and max. You can control this with either the vmin and vmax arguments or with the norm argument (if you want a non-linear scaling).

How do I show Matplotlib Matrix?

MatPlotLib with Python Initialize max and min values for matrix. Plot the values of a 2D matrix or array as color-coded image. Iterate each cell of the color-code image and place value at the center. To display the figure, use show() method.

What is Matshow Matplotlib?

matplotlib. pyplot. matshow() This is mostly used to visualize the 2D matrix. It will show same color for the same number inside matrix.

What is Imshow return?

As you have already found out, the return type of plt. imshow() is a matplotlib. image.


3 Answers

Can you do something like:

import numpy as np
import matplotlib.pyplot as plt

fig, ax = plt.subplots()

min_val, max_val = 0, 10
ind_array = np.arange(min_val + 0.5, max_val + 0.5, 1.0)
x, y = np.meshgrid(ind_array, ind_array)

for i, (x_val, y_val) in enumerate(zip(x.flatten(), y.flatten())):
    c = 'x' if i%2 else 'o' 
    ax.text(x_val, y_val, c, va='center', ha='center')
#alternatively, you could do something like
#for x_val, y_val in zip(x.flatten(), y.flatten()):
#    c = 'x' if (x_val + y_val)%2 else 'o'

ax.set_xlim(min_val, max_val)
ax.set_ylim(min_val, max_val)
ax.set_xticks(np.arange(max_val))
ax.set_yticks(np.arange(max_val))
ax.grid()

enter image description here


Edit:

Here is an updated example with an imshow background.

import numpy as np
import matplotlib.pyplot as plt

fig, ax = plt.subplots()

min_val, max_val, diff = 0., 10., 1.

#imshow portion
N_points = (max_val - min_val) / diff
imshow_data = np.random.rand(N_points, N_points)
ax.imshow(imshow_data, interpolation='nearest')

#text portion
ind_array = np.arange(min_val, max_val, diff)
x, y = np.meshgrid(ind_array, ind_array)

for x_val, y_val in zip(x.flatten(), y.flatten()):
    c = 'x' if (x_val + y_val)%2 else 'o'
    ax.text(x_val, y_val, c, va='center', ha='center')

#set tick marks for grid
ax.set_xticks(np.arange(min_val-diff/2, max_val-diff/2))
ax.set_yticks(np.arange(min_val-diff/2, max_val-diff/2))
ax.set_xticklabels([])
ax.set_yticklabels([])
ax.set_xlim(min_val-diff/2, max_val-diff/2)
ax.set_ylim(min_val-diff/2, max_val-diff/2)
ax.grid()
plt.show()

enter image description here

like image 61
wflynny Avatar answered Sep 19 '22 17:09

wflynny


For your graph you should should try with pyplot.table:

import matplotlib.pyplot as plt
import numpy as np

board = np.zeros((10, 10))
board[0,0] = 1
board[0,1] = -1
board[0,2] = 1
def visBoard(board):
    data = np.empty(board.shape,dtype=np.str)
    data[:,:] = ' '
    data[board==1.0] = 'X'
    data[board==-1.0] = 'O'
    plt.axis('off')
    size = np.ones(board.shape[0])/board.shape[0]
    plt.table(cellText=data,loc='center',colWidths=size,cellLoc='center',bbox=[0,0,1,1])
    plt.show()

visBoard(board)
like image 30
Alvaro Fuentes Avatar answered Sep 19 '22 17:09

Alvaro Fuentes


Some elaboration on the code of @wflynny making it into a function that takes any matrix no matter what size and plots its values.

import numpy as np
import matplotlib.pyplot as plt

cols = np.random.randint(low=1,high=30)
rows = np.random.randint(low=1,high=30)
X = np.random.rand(rows,cols)

def plotMat(X):
    fig, ax = plt.subplots()
    #imshow portion
    ax.imshow(X, interpolation='nearest')
    #text portion
    diff = 1.
    min_val = 0.
    rows = X.shape[0]
    cols = X.shape[1]
    col_array = np.arange(min_val, cols, diff)
    row_array = np.arange(min_val, rows, diff)
    x, y = np.meshgrid(col_array, row_array)
    for col_val, row_val in zip(x.flatten(), y.flatten()):
        c = '+' if X[row_val.astype(int),col_val.astype(int)] < 0.5 else '-' 
        ax.text(col_val, row_val, c, va='center', ha='center')
    #set tick marks for grid
    ax.set_xticks(np.arange(min_val-diff/2, cols-diff/2))
    ax.set_yticks(np.arange(min_val-diff/2, rows-diff/2))
    ax.set_xticklabels([])
    ax.set_yticklabels([])
    ax.set_xlim(min_val-diff/2, cols-diff/2)
    ax.set_ylim(min_val-diff/2, rows-diff/2)
    ax.grid()
    plt.show()

plotMat(X)
like image 26
Reed Richards Avatar answered Sep 20 '22 17:09

Reed Richards