So there is this guide: http://matplotlib.org/examples/pylab_examples/scatter_symbol.html
# http://matplotlib.org/examples/pylab_examples/scatter_symbol.html from matplotlib import pyplot as plt import numpy as np import matplotlib x = np.arange(0.0, 50.0, 2.0) y = x ** 1.3 + np.random.rand(*x.shape) * 30.0 s = np.random.rand(*x.shape) * 800 + 500 plt.scatter(x, y, s, c="g", alpha=0.5, marker=r'$\clubsuit$', label="Luck") plt.xlabel("Leprechauns") plt.ylabel("Gold") plt.legend(loc=2) plt.show()
But what if you are like me and don't want to use a clubsuit marker...
How do you make your own marker _________?
UPDATE
What I like about this special marker type is that it's easy to adjust with simple matplotlib syntax:
from matplotlib import pyplot as plt import numpy as np import matplotlib x = np.arange(0.0, 50.0, 2.0) y = x ** 1.3 + np.random.rand(*x.shape) * 30.0 s = np.random.rand(*x.shape) * 800 + 500 plt.plot(x, y, "ro", alpha=0.5, marker=r'$\clubsuit$', markersize=22) plt.xlabel("Leprechauns") plt.ylabel("Gold") plt.show()
To make hollow square marks with matplotlib, we can use marker 'ks', markerfacecolor='none', markersize=15, and markeredgecolor=red.
Initialize a list for x and y with a single value. Limit X and Y axis range for 0 to 5. Lay out a grid in the current line style. Plot x and y using plot() method with marker="o", markeredgecolor="red", markerfacecolor="green".
So found out that it was just using mathtext symbols and not referring to any special vector based marker stored in the matplotlib module...
from matplotlib import pyplot as plt import numpy as np from numpy.random import randint import matplotlib x = np.arange(0.0, 100.0, 2.0) y = x ** 1.3 + np.random.rand(*x.shape) * 30.0 s = np.random.rand(*x.shape) * 800 + 500 markers = ['\\alpha', '\\beta', '\gamma', '\sigma','\infty', \ '\spadesuit', '\heartsuit', '\diamondsuit', '\clubsuit', \ '\\bigodot', '\\bigotimes', '\\bigoplus', '\imath', '\\bowtie', \ '\\bigtriangleup', '\\bigtriangledown', '\oslash' \ '\ast', '\\times', '\circ', '\\bullet', '\star', '+', \ '\Theta', '\Xi', '\Phi', \ '\$', '\#', '\%', '\S'] def getRandomMarker(): return "$"+markers[randint(0,len(markers),1)]+"$" def getMarker(i): # Use modulus in order not to have the index exceeding the lenght of the list (markers) return "$"+markers[i % len(markers)]+"$" for i, mi in enumerate(markers): plt.plot(x[i], y[i], "b", alpha=0.5, marker=getRandomMarker(), markersize=randint(16,26,1)) plt.plot(x[i], y[i]+50, "m", alpha=0.5, marker=getMarker(i), markersize=randint(16,26,1)) # Let's see if their "center" is located where we expect them to be... plt.plot(x[i], y[i]+100, "y", alpha=0.5, marker=getMarker(i), markersize=24) plt.plot(x[i], y[i]+100, "k+", markersize=12, markeredgewidth=2) plt.xlabel("x-axis") plt.ylabel("y-axis") plt.xlim( -5, plt.xlim()[1]+5 ) plt.ylim( 0, plt.ylim()[1]*1.1 ) plt.gcf().set_size_inches(12,6) plt.show()
The most flexible option for matplotlib
is marker paths.
I used Inkscape to convert Smiley face svg into a single SVG path. Inkscape also has options to trace path in raster images. The I used svg path to convert it to matplotlib.path.Path
using svgpath2mpl.
!pip install svgpath2mpl matplotlib from svgpath2mpl import parse_path import matplotlib.pyplot as plt import numpy as np # Use Inkscape to edit SVG, # Path -> Combine to convert multiple paths into a single path # Use Path -> Object to path to convert objects to SVG path smiley = parse_path("""m 739.01202,391.98936 c 13,26 13,57 9,85 -6,27 -18,52 -35,68 -21,20 -50,23 -77,18 -15,-4 -28,-12 -39,-23 -18,-17 -30,-40 -36,-67 -4,-20 -4,-41 0,-60 l 6,-21 z m -302,-1 c 2,3 6,20 7,29 5,28 1,57 -11,83 -15,30 -41,52 -72,60 -29,7 -57,0 -82,-15 -26,-17 -45,-49 -50,-82 -2,-12 -2,-33 0,-45 1,-10 5,-26 8,-30 z M 487.15488,66.132209 c 121,21 194,115.000001 212,233.000001 l 0,8 25,1 1,18 -481,0 c -6,-13 -10,-27 -13,-41 -13,-94 38,-146 114,-193.000001 45,-23 93,-29 142,-26 z m -47,18 c -52,6 -98,28.000001 -138,62.000001 -28,25 -46,56 -51,87 -4,20 -1,57 5,70 l 423,1 c 2,-56 -39,-118 -74,-157 -31,-34 -72,-54.000001 -116,-63.000001 -11,-2 -38,-2 -49,0 z m 138,324.000001 c -5,6 -6,40 -2,58 3,16 4,16 10,10 14,-14 38,-14 52,0 15,18 12,41 -6,55 -3,3 -5,5 -5,6 1,4 22,8 34,7 42,-4 57.6,-40 66.2,-77 3,-17 1,-53 -4,-59 l -145.2,0 z m -331,-1 c -4,5 -5,34 -4,50 2,14 6,24 8,24 1,0 3,-2 6,-5 17,-17 47,-13 58,9 7,16 4,31 -8,43 -4,4 -7,8 -7,9 0,0 4,2 8,3 51,17 105,-20 115,-80 3,-15 0,-43 -3,-53 z m 61,-266 c 0,0 46,-40 105,-53.000001 66,-15 114,7 114,7 0,0 -14,76.000001 -93,95.000001 -76,18 -126,-49 -126,-49 z""") smiley.vertices -= smiley.vertices.mean(axis=0) x = np.linspace(-3, 3, 20) plt.plot(x, np.sin(x), marker=smiley, markersize=20, color='c') plt.show()
Google Colab Link
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With