I have written a routine to draw vertical cross sections from atmospheric model output. An example is shown below. What I would like to do, is to show two vertical axes: on the left I display presure values on a log scale, and on the right I show altitudes in km. I thought it would be nice to show the altitudes at the locations of the model levels - this is why they are irregularly spaced. All works nicely, except that the labels on the right overlap near the bottom. I found out that I can hide specific labels using ax2.get_yticklabels()[index].set_visible(False)
. My problem is: how do I determine which labels (indices) I want to hide? I believe it should be possible to find out where the tick labels are positioned (in axis or figure coordinates). Then I could use a threshold distance as in
yp = -1
for t in ax2.get_yticklabels():
y = t.get_position().y0 # this doesn't yield any useful bbox!
if y-yp < threshold:
t.set_visible(False)
else:
yp = y
Unfortunately, I haven't found a way to get the label coordinates. Any hints?
Here is the example figure:
And here is the complete code that does the plotting (data is a 2-D array, x are latitudes, and y are pressure values):
def plotZM(data, x, y, plotOpt=None):
"""Create a zonal mean contour plot of one variable
plotOpt is a dictionary with plotting options:
'scale_factor': multiply values with this factor before plotting
'units': a units label for the colorbar
'levels': use list of values as contour intervals
'title': a title for the plot
"""
if plotOpt is None: plotOpt = {}
# create figure and axes
fig = plt.figure()
ax1 = fig.add_subplot(111)
# scale data if requested
scale_factor = plotOpt.get('scale_factor', 1.0)
pdata = data * scale_factor
# determine contour levels to be used; default: linear spacing, 20 levels
clevs = plotOpt.get('levels', np.linspace(data.min(), data.max(), 20))
# map contour values to colors
norm=matplotlib.colors.BoundaryNorm(clevs, ncolors=256, clip=False)
# draw the (filled) contours
contour = ax1.contourf(x, y, pdata, levels=clevs, norm=norm)
# add a title
title = plotOpt.get('title', 'Vertical cross section')
ax1.set_title(title) # optional keyword: fontsize="small"
# add colorbar
# Note: use of the ticks keyword forces colorbar to draw all labels
fmt = matplotlib.ticker.FormatStrFormatter("%g")
cbar = fig.colorbar(contour, ax=ax1, orientation='horizontal', shrink=0.8,
ticks=clevs, format=fmt)
cbar.set_label(plotOpt.get('units', ''))
for t in cbar.ax.get_xticklabels():
t.set_fontsize("x-small")
# change font size of x labels
xlabels = ax1.get_xticklabels()
for t in xlabels:
t.set_fontsize("x-small")
# set up y axes: log pressure labels on the left y axis, altitude labels
# according to model levels on the right y axis
ax1.set_ylabel("Pressure [hPa]")
ax1.set_yscale('log')
ax1.set_ylim(y.max(), y.min())
subs = [1,2,5]
print "y_max/y_min = ", y.max()/y.min()
if y.max()/y.min() < 30.:
subs = [1,2,3,4,5,6,7,8,9]
loc = matplotlib.ticker.LogLocator(base=10., subs=subs)
ax1.yaxis.set_major_locator(loc)
fmt = matplotlib.ticker.FormatStrFormatter("%g")
ax1.yaxis.set_major_formatter(fmt)
ylabels = ax1.get_yticklabels()
for t in ylabels:
t.set_fontsize("x-small")
# calculate altitudes from pressure values (use fixed scale height)
z0 = 8.400 # scale height for pressure_to_altitude conversion [km]
altitude = z0 * np.log(1015.23/y)
# add second y axis for altitude scale
ax2 = ax1.twinx()
ax2.set_ylabel("Altitude [km]")
ax2.set_ylim(altitude.min(), altitude.max())
ax2.set_yticks(altitude)
fmt = matplotlib.ticker.FormatStrFormatter("%6.1f")
ax2.yaxis.set_major_formatter(fmt)
# tweak altitude labels
ylabels = ax2.get_yticklabels()
for i,t in enumerate(ylabels):
t.set_fontsize("x-small")
# show plot
plt.show()
Here is an updated version fo the plotZM routine which will plot the model levels into a separate panel to the right and use linear equidistant markers for the altitude axis. Another option has been added to mask out regions below the surface pressure.
This code is "zoom-safe" (i.e. the altitude and pressure labels change nicely when you zoom into the plot or pan it, and the model levels change consistently). It also contains quite a bunch of axis and label tweaking and may therefore hopefully be useful to others as a more complex example of what you can do with matplotlib. An example figure is shown below.
def plotZM(data, x, y, plotOpt=None, modelLevels=None, surfacePressure=None):
"""Create a zonal mean contour plot of one variable
plotOpt is a dictionary with plotting options:
'scale_factor': multiply values with this factor before plotting
'units': a units label for the colorbar
'levels': use list of values as contour intervals
'title': a title for the plot
modelLevels: a list of pressure values indicating the model vertical resolution. If present,
a small side panel will be drawn with lines for each model level
surfacePressure: a list (dimension len(x)) of surface pressure values. If present, these will
be used to mask out regions below the surface
"""
# explanation of axes:
# ax1: primary coordinate system latitude vs. pressure (left ticks on y axis)
# ax2: twinned axes for altitude coordinates on right y axis
# axm: small side panel with shared y axis from ax2 for display of model levels
# right y ticks and y label will be drawn on axr if modelLevels are given, else on ax2
# axr: pointer to "right axis", either ax2 or axm
if plotOpt is None: plotOpt = {}
labelFontSize = "small"
# create figure and axes
fig = plt.figure()
ax1 = fig.add_subplot(111)
# scale data if requested
scale_factor = plotOpt.get('scale_factor', 1.0)
pdata = data * scale_factor
# determine contour levels to be used; default: linear spacing, 20 levels
clevs = plotOpt.get('levels', np.linspace(data.min(), data.max(), 20))
# map contour values to colors
norm=matplotlib.colors.BoundaryNorm(clevs, ncolors=256, clip=False)
# draw the (filled) contours
contour = ax1.contourf(x, y, pdata, levels=clevs, norm=norm)
# mask out surface pressure if given
if not surfacePressure is None:
ax1.fill_between(x, surfacePressure, surfacePressure.max(), color="white")
# add a title
title = plotOpt.get('title', 'Vertical cross section')
ax1.set_title(title)
# add colorbar
# Note: use of the ticks keyword forces colorbar to draw all labels
fmt = matplotlib.ticker.FormatStrFormatter("%g")
cbar = fig.colorbar(contour, ax=ax1, orientation='horizontal', shrink=0.8,
ticks=clevs, format=fmt)
cbar.set_label(plotOpt.get('units', ''))
for t in cbar.ax.get_xticklabels():
t.set_fontsize(labelFontSize)
# set up y axes: log pressure labels on the left y axis, altitude labels
# according to model levels on the right y axis
ax1.set_ylabel("Pressure [hPa]")
ax1.set_yscale('log')
ax1.set_ylim(10.*np.ceil(y.max()/10.), y.min()) # avoid truncation of 1000 hPa
subs = [1,2,5]
if y.max()/y.min() < 30.:
subs = [1,2,3,4,5,6,7,8,9]
y1loc = matplotlib.ticker.LogLocator(base=10., subs=subs)
ax1.yaxis.set_major_locator(y1loc)
fmt = matplotlib.ticker.FormatStrFormatter("%g")
ax1.yaxis.set_major_formatter(fmt)
for t in ax1.get_yticklabels():
t.set_fontsize(labelFontSize)
# calculate altitudes from pressure values (use fixed scale height)
z0 = 8.400 # scale height for pressure_to_altitude conversion [km]
altitude = z0 * np.log(1015.23/y)
# add second y axis for altitude scale
ax2 = ax1.twinx()
# change values and font size of x labels
ax1.set_xlabel('Latitude [degrees]')
xloc = matplotlib.ticker.FixedLocator(np.arange(-90.,91.,30.))
ax1.xaxis.set_major_locator(xloc)
for t in ax1.get_xticklabels():
t.set_fontsize(labelFontSize)
# draw horizontal lines to the right to indicate model levels
if not modelLevels is None:
pos = ax1.get_position()
axm = fig.add_axes([pos.x1,pos.y0,0.02,pos.height], sharey=ax2)
axm.set_xlim(0., 1.)
axm.xaxis.set_visible(False)
modelLev = axm.hlines(altitude, 0., 1., color='0.5')
axr = axm # specify y axis for right tick marks and labels
# turn off tick labels of ax2
for t in ax2.get_yticklabels():
t.set_visible(False)
label_xcoor = 3.7
else:
axr = ax2
label_xcoor = 1.05
axr.set_ylabel("Altitude [km]")
axr.yaxis.set_label_coords(label_xcoor, 0.5)
axr.set_ylim(altitude.min(), altitude.max())
yrloc = matplotlib.ticker.MaxNLocator(steps=[1,2,5,10])
axr.yaxis.set_major_locator(yrloc)
axr.yaxis.tick_right()
for t in axr.yaxis.get_majorticklines():
t.set_visible(False)
for t in axr.get_yticklabels():
t.set_fontsize(labelFontSize)
# show plot
plt.show()
I'd rather not do such things. This might make problems, e.g., when resizing the plot window or when changing dpi of output images. And it will definitely look awkward.
You should either
If you need help with this, just ask.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With