Does anyone know of a Python replacement for Matlab / Octave bwdist() function? This function returns Euclidian distance of each cell to the closest non-zero cell for a given matrix. I saw an Octave C implementation, a pure Matlab implementation, and I was wondering if anyone had to implement this in ANSI C (which doesn't include any Matlab / Octave headers, so I can integrate from Python easily) or in pure Python.
Both links I mentioned are below:
C++
Matlab M-File
As a test, a Matlab code / output looks something like this:
bw= [0 1 0 0 0;
1 0 0 0 0;
0 0 0 0 1;
0 0 0 0 0;
0 0 1 0 0]
D = bwdist(bw)
D =
1.00000 0.00000 1.00000 2.00000 2.00000
0.00000 1.00000 1.41421 1.41421 1.00000
1.00000 1.41421 2.00000 1.00000 0.00000
2.00000 1.41421 1.00000 1.41421 1.00000
2.00000 1.00000 0.00000 1.00000 2.00000
I tested a recommended distance_transform_edt call in Python, which gave this result:
import numpy as np from scipy import ndimage
a = np.array(([0,1,0,0,0],
[1,0,0,0,0],
[0,0,0,0,1],
[0,0,0,0,0],
[0,0,1,0,0]))
res = ndimage.distance_transform_edt(a)
print res
[[ 0. 1. 0. 0. 0.]
[ 1. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 1.]
[ 0. 0. 0. 0. 0.]
[ 0. 0. 1. 0. 0.]]
This result does not seem to match the Octave / Matlab output.
While Matlab bwdist
returns distances to the closest non-zero cell, Python distance_transform_edt
returns distances “to the closest background element”. SciPy documentation is not clear about what it considers to be the “background”, there is some type conversion machinery behind it; in practice 0
is the background, non-zero is the foreground.
So if we have matrix a
:
>>> a = np.array(([0,1,0,0,0],
[1,0,0,0,0],
[0,0,0,0,1],
[0,0,0,0,0],
[0,0,1,0,0]))
then to calculate the same result we need to replaces ones with zeros and zeros with ones, e.g. consider matrix 1-a
:
>>> a
array([[0, 1, 0, 0, 0],
[1, 0, 0, 0, 0],
[0, 0, 0, 0, 1],
[0, 0, 0, 0, 0],
[0, 0, 1, 0, 0]])
>>> 1 - a
array([[1, 0, 1, 1, 1],
[0, 1, 1, 1, 1],
[1, 1, 1, 1, 0],
[1, 1, 1, 1, 1],
[1, 1, 0, 1, 1]])
In this case scipy.ndimage.morphology.distance_transform_edt
gives the expected results:
>>> distance_transform_edt(1-a)
array([[ 1. , 0. , 1. , 2. , 2. ],
[ 0. , 1. , 1.41421356, 1.41421356, 1. ],
[ 1. , 1.41421356, 2. , 1. , 0. ],
[ 2. , 1.41421356, 1. , 1.41421356, 1. ],
[ 2. , 1. , 0. , 1. , 2. ]])
Does scipy.ndimage.morphology.distance_transform_edt
meet your needs?
No need to do the 1-a
>>> distance_transform_edt(a==0)
array([[ 1. , 0. , 1. , 2. , 2. ],
[ 0. , 1. , 1.41421356, 1.41421356, 1. ],
[ 1. , 1.41421356, 2. , 1. , 0. ],
[ 2. , 1.41421356, 1. , 1.41421356, 1. ],
[ 2. , 1. , 0. , 1. , 2. ]])
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With