I've a vector that I would like to split into overlapping subvectors of size cs
in shifts of sh
. Imagine the input vector is:
v=[1 2 3 4 5 6 7 8 9 10 11 12 13]; % A=[1:13]
given a chunksize
of 4 (cs=4
) and shift of 2 (sh=2
), the result should look like:
[1 2 3 4]
[3 4 5 6]
[5 6 7 8]
[7 8 9 10]
[9 10 11 12]
note that the input vector is not necessarily divisible by the chunksize
and therefore some subvectors are discarded. Is there any fast way to compute that, without the need of using e.g. a for
loop?
In a related post I found how to do that but when considering non-overlapping subvectors.
You can use the function bsxfun
in the following manner:
v=[1 2 3 4 5 6 7 8 9 10 11 12 13]; % A=[1:13]
cs=4;
sh=2;
A = v(bsxfun(@plus,(1:cs),(0:sh:length(v)-cs)'));
Here is how it works. bsxfun
applies some basic functions on 2 arrays and performs some repmat
-like if the sizes of inputs do not fit. In this case, I generate the indexes of the first chunk, and add the offset of each chunck. As one input is a row-vector and the other is a column-vector, the result is a matrix. Finally, when indexing a vector with a matrix, the result is a matrix, that is precisely what you expect.
And it is a one-liner, (almost) always fun :).
Do you have the signal processing toolbox? Then the command is buffer
. First look at the bare output:
buffer(v, 4, 2)
ans =
0 1 3 5 7 9 11
0 2 4 6 8 10 12
1 3 5 7 9 11 13
2 4 6 8 10 12 0
That's clearly the right idea, with only a little tuning necessary to give you exactly the output you want:
[y z] = buffer(v, 4, 2, 'nodelay');
y.'
ans =
1 2 3 4
3 4 5 6
5 6 7 8
7 8 9 10
9 10 11 12
That said, consider leaving the vectors columnwise, as that better matches most use cases. For example, the mean of each window is just mean
of the matrix, as columnwise is the default.
I suppose the simplest way is actually with a loop. A vectorizes solution can be faster, but if the result is properly preallocated the loop should perform decently as well.
v = 1:13
cs = 4;
sh = 2;
myMat = NaN(floor((numel(v) - cs) / sh) + 1,cs);
count = 0;
for t = cs:sh:numel(v)
count = count+1;
myMat(count,:) = v(t-cs+1:t);
end
You can accomplish this with ndgrid
:
>> v=1:13; cs=4; sh=2;
>> [Y,X]=ndgrid(1:(cs-sh):(numel(v)-cs+1),0:cs-1)
>> chunks = X+Y
chunks =
1 2 3 4
3 4 5 6
5 6 7 8
7 8 9 10
9 10 11 12
The nice thing about the second syntax of the colon
operator (j:i:k
) is that you don't have to calculate k
exactly (e.g. 1:2:6
gives [1 3 5]
) if you plan to discard the extra entries, as in this problem. It automatically goes to j+m*i
, where m = fix((k-j)/i)
;
Different test:
>> v=1:14; cs=5; sh=2; % or v=1:15 or v=1:16
>> [Y,X]=ndgrid(1:(cs-sh):(numel(v)-cs+1),0:cs-1); chunks = X+Y
chunks =
1 2 3 4 5
4 5 6 7 8
7 8 9 10 11
10 11 12 13 14
And a new row will form with v=1:17
. Does this handle all cases as needed?
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With