I have four sets of data, the distribution of which I would like to represent in MATLAB in one figure. Current code is:
[n1,x1]=hist([dataset1{:}]);
[n2,x2]=hist([dataset2{:}]);
[n3,x3]=hist([dataset3{:}]);
[n4,x4]=hist([dataset4{:}]);
bar(x1,n1,'hist');
hold on; h1=bar(x1,n1,'hist'); set(h1,'facecolor','g')
hold on; h2=bar(x2,n2,'hist'); set(h2,'facecolor','g')
hold on; h3=bar(x3,n3,'hist'); set(h3,'facecolor','g')
hold on; h4=bar(x4,n4,'hist'); set(h4,'facecolor','g')
hold off
My issue is that I have different sampling sizes for each group, dataset1 has an n of 69, dataset2 has an n of 23, dataset3 and dataset4 have n's of 10. So how do I normalize the distributions when representing these three groups together?
Is there some way to..for example..divide the instances in each bin by the sampling for that group?
You can normalize your histograms by dividing by the total number of elements:
[n1,x1] = histcounts(randn(69,1));
[n2,x2] = histcounts(randn(23,1));
[n3,x3] = histcounts(randn(10,1));
[n4,x4] = histcounts(randn(10,1));
hold on
bar(x4(1:end-1),n4./sum(n4),'histc');
bar(x3(1:end-1),n3./sum(n3),'histc');
bar(x2(1:end-1),n2./sum(n2),'histc');
bar(x1(1:end-1),n1./sum(n1),'histc');
hold off
ax = gca;
set(ax.Children,{'FaceColor'},mat2cell(lines(4),ones(4,1),3))
set(ax.Children,{'FaceAlpha'},repmat({0.7},4,1))
However, as you can see above, you can do some more things to make your code more simple and short:
hold on
once.bar
handles, use the axes
handle.axes
handle set all properties at one command.and as a side note - it's better to use histcounts
.
Here is the result:
EDIT:
If you want to also plot the pdf line from histfit
, then you can save it first, and then plot it normalized:
dataset = {randn(69,1),randn(23,1),randn(10,1),randn(10,1)};
fits = zeros(100,2,numel(dataset));
hold on
for k = numel(dataset):-1:1
total = numel(dataset{k}); % for normalizing
f = histfit(dataset{k}); % draw the histogram and fit
% collect the curve data and normalize it:
fits(:,:,k) = [f(2).XData; f(2).YData./total].';
x = f(1).XData; % collect the bar positions
n = f(1).YData; % collect the bar counts
f.delete % delete the histogram and the fit
bar(x,n./total,'histc'); % plot the bar
end
ax = gca; % get the axis handle
% set all color and transparency for the bars:
set(ax.Children,{'FaceColor'},mat2cell(lines(4),ones(4,1),3))
set(ax.Children,{'FaceAlpha'},repmat({0.7},4,1))
% plot all the curves:
plot(squeeze(fits(:,1,:)),squeeze(fits(:,2,:)),'LineWidth',3)
hold off
Again, there are some other improvements you can introduce to your code:
The new result is:
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With