I have a dataframe df1
like this
id ` text c1
1 Hello world how are you people 1
2 Hello people I am fine people 1
3 Good Morning people -1
4 Good Evening -1
I want to make df2
such that, it contain all the words of df1
only once with their count (total occurrence) and
I want to sum c1
column and make a new column of it in df2
(sum only if a word is in that row).
Expected output:
Word Totalcount Points
hello 2 2
world 1 1
how 1 1
are 1 1
you 1 1
people 3 1
I 1 1
am 1 1
fine 1 1
Good 2 -2
Morning 1 -1
Evening 1 -1
First extract column by DataFrame.pop
, Series.str.split
,DataFrame.stack
for Series
and DataFrame.join
to original, then remove duplicates by DataFrame.drop_duplicates
and aggregate by GroupBy.agg
with counts and sum
:
s = (df.pop('text')
.str.split(expand=True)
.stack()
.reset_index(1, drop=True)
.rename('text'))
df1 = (df.join(s)
.reset_index(drop=True)
.drop_duplicates(['id','text'])
.groupby('text', sort=False)['c1']
.agg([('Totalcount','size'),('Points','sum')])
.reset_index()
.rename(columns={'text':'Word'}))
print (df1)
Word Totalcount Points
0 Hello 2 2
1 world 1 1
2 how 1 1
3 are 1 1
4 you 1 1
5 people 3 1
6 I 1 1
7 am 1 1
8 fine 1 1
9 Good 2 -2
10 Morning 1 -1
11 Evening 1 -1
EDIT:
For better performance use chain.from_iterable
with numpy.repeat
:
from itertools import chain
splitted = [x.split() for x in df['text']]
lens = [len(x) for x in splitted]
df = pd.DataFrame({
'Word' : list(chain.from_iterable(splitted)),
'id' : df['id'].values.repeat(lens),
'c1' : df['c1'].values.repeat(lens)
})
df1 = (df.drop_duplicates(['id','Word'])
.groupby('Word', sort=False)['c1']
.agg([('Totalcount','size'),('Points','sum')])
.reset_index())
print (df1)
Word Totalcount Points
0 Hello 2 2
1 world 1 1
2 how 1 1
3 are 1 1
4 you 1 1
5 people 3 1
6 I 1 1
7 am 1 1
8 fine 1 1
9 Good 2 -2
10 Morning 1 -1
11 Evening 1 -1
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With