I have data points that represent a coordinates for a 2D array (matrix). The points are regularly gridded, except that data points are missing from some grid positions.
For example, consider some XYZ data that fits on a regular 0.1 grid with shape (3, 4). There are gaps and missing points, so there are 5 points, and not 12:
import numpy as np
X = np.array([0.4, 0.5, 0.4, 0.4, 0.7])
Y = np.array([1.0, 1.0, 1.1, 1.2, 1.2])
Z = np.array([3.3, 2.5, 3.6, 3.8, 1.8])
# Evaluate the regular grid dimension values
Xr = np.linspace(X.min(), X.max(), np.round((X.max() - X.min()) / np.diff(np.unique(X)).min()) + 1)
Yr = np.linspace(Y.min(), Y.max(), np.round((Y.max() - Y.min()) / np.diff(np.unique(Y)).min()) + 1)
print('Xr={0}; Yr={1}'.format(Xr, Yr))
# Xr=[ 0.4 0.5 0.6 0.7]; Yr=[ 1. 1.1 1.2]
What I would like to see is shown in this image (backgrounds: black=base-0 index; grey=coordinate value; colour=matrix value; white=missing).
Here's what I have, which is intuitive with a for loop:
ar = np.ma.array(np.zeros((len(Yr), len(Xr)), dtype=Z.dtype), mask=True)
for x, y, z in zip(X, Y, Z):
j = (np.abs(Xr - x)).argmin()
i = (np.abs(Yr - y)).argmin()
ar[i, j] = z
print(ar)
# [[3.3 2.5 -- --]
# [3.6 -- -- --]
# [3.8 -- -- 1.8]]
Is there a more NumPythonic way of vectorising the approach to return a 2D array ar
? Or is the for loop necessary?
To create a NumPy array, you can use the function np. array() . All you need to do to create a simple array is pass a list to it. If you choose to, you can also specify the type of data in your list.
convert a 1-dimensional array into a 2-dimensional array by adding new axis. a=np. array([10,20,30,40,50,60]) b=a[:,np. newaxis]--it will convert it to two dimension.
Use reshape() Function to Transform 1d Array to 2d Array.
You can do it on one line with np.histogram2d
data = np.histogram2d(Y, X, bins=[len(Yr),len(Xr)], weights=Z)
print(data[0])
[[ 3.3 2.5 0. 0. ]
[ 3.6 0. 0. 0. ]
[ 3.8 0. 0. 1.8]]
You can use X
and Y
to create the X-Y coordinates on a 0.1
spaced grid extending from the min to max of X
and min to max of Y
and then inserting Z's
into those specific positions. This would avoid using linspace
to get Xr
and Yr
and as such must be quite efficient. Here's the implementation -
def indexing_based(X,Y,Z):
# Convert X's and Y's to indices on a 0.1 spaced grid
X_int = np.round((X*10)).astype(int)
Y_int = np.round((Y*10)).astype(int)
X_idx = X_int - X_int.min()
Y_idx = Y_int - Y_int.min()
# Setup output array and index it with X_idx & Y_idx to set those as Z
out = np.zeros((Y_idx.max()+1,X_idx.max()+1))
out[Y_idx,X_idx] = Z
return out
Runtime tests -
This section compare the indexing-based
approach against the other np.histogram2d
based solution for performance -
In [132]: # Create unique couples X-Y (as needed to work with histogram2d)
...: data = np.random.randint(0,1000,(5000,2))
...: data1 = data[np.lexsort(data.T),:]
...: mask = ~np.all(np.diff(data1,axis=0)==0,axis=1)
...: data2 = data1[np.append([True],mask)]
...:
...: X = (data2[:,0]).astype(float)/10
...: Y = (data2[:,1]).astype(float)/10
...: Z = np.random.randint(0,1000,(X.size))
...:
In [133]: def histogram_based(X,Y,Z): # From other np.histogram2d based solution
...: Xr = np.linspace(X.min(), X.max(), np.round((X.max() - X.min()) / np.diff(np.unique(X)).min()) + 1)
...: Yr = np.linspace(Y.min(), Y.max(), np.round((Y.max() - Y.min()) / np.diff(np.unique(Y)).min()) + 1)
...: data = np.histogram2d(Y, X, bins=[len(Yr),len(Xr)], weights=Z)
...: return data[0]
...:
In [134]: %timeit histogram_based(X,Y,Z)
10 loops, best of 3: 22.8 ms per loop
In [135]: %timeit indexing_based(X,Y,Z)
100 loops, best of 3: 2.11 ms per loop
You could use a scipy coo_matrix. It allows you to construct a sparse matrix from coordinates and data. See examples on the attached link.
http://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.sparse.coo_matrix.html
Hope that helps.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With