I need to generate bins for the purposes of calculating a histogram. Language is C#. Basically I need to take in an array of decimal numbers and generate a histogram plot out of those.
Haven't been able to find a decent library to do this outright so now I'm just looking for either a library or an algorithm to help me do the binning of the data.
So...
Here is a simple bucket function I use. Sadly, .NET generics doesn't support a numerical type contraint so you will have to implement a different version of the following function for decimal, int, double, etc.
public static List<int> Bucketize(this IEnumerable<decimal> source, int totalBuckets)
{
var min = source.Min();
var max = source.Max();
var buckets = new List<int>();
var bucketSize = (max - min) / totalBuckets;
foreach (var value in source)
{
int bucketIndex = 0;
if (bucketSize > 0.0)
{
bucketIndex = (int)((value - min) / bucketSize);
if (bucketIndex == totalBuckets)
{
bucketIndex--;
}
}
buckets[bucketIndex]++;
}
return buckets;
}
I got odd results using @JakePearson accepted answer. It has to do with an edge case.
Here is the code I used to test his method. I changed the extension method ever so slightly, returning an int[]
and accepting double
instead of decimal
.
public partial class Form1 : Form
{
public Form1()
{
InitializeComponent();
Random rand = new Random(1325165);
int maxValue = 100;
int numberOfBuckets = 100;
List<double> values = new List<double>();
for (int i = 0; i < 10000000; i++)
{
double value = rand.NextDouble() * (maxValue+1);
values.Add(value);
}
int[] bins = values.Bucketize(numberOfBuckets);
PointPairList points = new PointPairList();
for (int i = 0; i < numberOfBuckets; i++)
{
points.Add(i, bins[i]);
}
zedGraphControl1.GraphPane.AddBar("Random Points", points,Color.Black);
zedGraphControl1.GraphPane.YAxis.Title.Text = "Count";
zedGraphControl1.GraphPane.XAxis.Title.Text = "Value";
zedGraphControl1.AxisChange();
zedGraphControl1.Refresh();
}
}
public static class Extension
{
public static int[] Bucketize(this IEnumerable<double> source, int totalBuckets)
{
var min = source.Min();
var max = source.Max();
var buckets = new int[totalBuckets];
var bucketSize = (max - min) / totalBuckets;
foreach (var value in source)
{
int bucketIndex = 0;
if (bucketSize > 0.0)
{
bucketIndex = (int)((value - min) / bucketSize);
if (bucketIndex == totalBuckets)
{
bucketIndex--;
}
}
buckets[bucketIndex]++;
}
return buckets;
}
}
Everything works well when using 10,000,000 random double values between 0 and 100 (exclusive). Each bucket has roughly the same number of values, which makes sense given that Random
returns a normal distribution.
But when I changed the value generation line from
double value = rand.NextDouble() * (maxValue+1);
to
double value = rand.Next(0, maxValue + 1);
and you get the following result, which double counts the last bucket.
It appears that when a value is same as one of the boundaries of a bucket, the code as it is written puts the value in the incorrect bucket. This artifact doesn't appear to happen with random double
values as the chance of a random number being equal to a boundary of a bucket is rare and wouldn't be obvious.
The way I corrected this is to define what side of the bucket boundary is inclusive vs. exclusive.
Think of
0< x <=1
1< x <=2
... 99< x <=100
vs.
0<= x <1
1<= x <2
... 99<= x <100
You cannot have both boundaries inclusive, as the method wouldn't know which bucket to put it in if you have a value that is exactly equal to a boundary.
public enum BucketizeDirectionEnum
{
LowerBoundInclusive,
UpperBoundInclusive
}
public static int[] Bucketize(this IList<double> source, int totalBuckets, BucketizeDirectionEnum inclusivity = BucketizeDirectionEnum.UpperBoundInclusive)
{
var min = source.Min();
var max = source.Max();
var buckets = new int[totalBuckets];
var bucketSize = (max - min) / totalBuckets;
if (inclusivity == BucketizeDirectionEnum.LowerBoundInclusive)
{
foreach (var value in source)
{
int bucketIndex = (int)((value - min) / bucketSize);
if (bucketIndex == totalBuckets)
continue;
buckets[bucketIndex]++;
}
}
else
{
foreach (var value in source)
{
int bucketIndex = (int)Math.Ceiling((value - min) / bucketSize) - 1;
if (bucketIndex < 0)
continue;
buckets[bucketIndex]++;
}
}
return buckets;
}
The only issue now is if the input dataset has a lot of min and max values, the binning method will exclude many of those values and the resulting graph will misrepresent the dataset.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With