Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Local solar time function from UTC and longitude

I'm wondering if there is a python function/module that calculates the local time after midnight (or local solar time) given the UTC time and longitude? It doesn't need to take into account daylight saving time.

Thanks in advance.

like image 690
Shejo284 Avatar asked Nov 09 '12 19:11

Shejo284


People also ask

How do I find my local solar time?

To determine Lst, multiply the difference in time between local standard clock time and Greenwich Mean Time (GMT) by 15°. This relationship comes from the fact that the sun takes 4 minutes to traverse 1° of longitude. Thus, if your local standard clock is 1 hour behind GMT then LST is 15°.

How is solar time different from LAT?

The solar hour angle is referenced to solar noon. Earth rotates through 15 degrees in each hour. The standard convention used is that the solar hour angle is negative before solar noon. So 14:00 hours LAT represents a solar hour angle of 30 degrees, and 10:00 hours LAT represents a solar hour angle of –30 degrees.

What is the relation of LMT to longitude?

Local mean time (LMT) is a form of solar time that corrects the variations of local apparent time, forming a uniform time scale at a specific longitude.

What is local solar time?

"Local solar time" (or simply "solar time") is the time according to the position of the sun in the sky relative to one specific location on the ground. In solar time, the sun is always due south (or north) at exactly noon.


1 Answers

I took a look at Jean Meeus' Astronomical Algorithms. I think you might be asking for local hour angle, which can be expressed in time (0-24hr), degrees (0-360) or radians (0-2pi).

I'm guessing you can do this with ephem. But just for the heck of it, here's some python:

#!/usr/local/bin/python

import sys
from datetime import datetime, time, timedelta
from math import pi, sin, cos, atan2, asin

# helpful constant
DEG_TO_RAD = pi / 180

# hardcode difference between Dynamical Time and Universal Time
# delta_T = TD - UT
# This comes from IERS Bulletin A
# ftp://maia.usno.navy.mil/ser7/ser7.dat
DELTA = 35.0

def coords(yr, mon, day):
    # @input year (int)
    # @input month (int)
    # @input day (float)
    # @output right ascention, in radians (float)
    # @output declination, in radians (float)

    # get julian day (AA ch7)
    day += DELTA / 60 / 60 / 24 # use dynamical time
    if mon <= 2:
        yr -= 1
        mon += 12
    a = yr / 100
    b = 2 - a + a / 4
    jd = int(365.25 * (yr + 4716)) + int(30.6 * (mon + 1)) + day + b - 1524.5

    # get sidereal time at greenwich (AA ch12)
    t = (jd - 2451545.0) / 36525

    # Calculate mean equinox of date (degrees)
    l = 280.46646 + 36000.76983 * t + 0.0003032 * t**2
    while (l > 360):
        l -= 360
    while (l < 0):
        l += 360

    # Calculate mean anomoly of sun (degrees)
    m = 357.52911 + 35999.05029 * t - 0.0001537 * t**2

    # Calculate eccentricity of Earth's orbit
    e = 0.016708634 - 0.000042037 * t - 0.0000001267 * t**2

    # Calculate sun's equation of center (degrees)
    c = (1.914602 - 0.004817 * t - .000014 * t**2) * sin(m * DEG_TO_RAD) \
        + (0.019993 - .000101 * t) * sin(2 * m * DEG_TO_RAD) \
        + 0.000289 * sin(3 * m * DEG_TO_RAD)

    # Calculate the sun's radius vector (AU)
    o = l + c # sun's true longitude (degrees)
    v = m + c # sun's true anomoly (degrees)

    r = (1.000001018 * (1 - e**2)) / (1 + e * cos(v * DEG_TO_RAD))

    # Calculate right ascension & declination
    seconds = 21.448 - t * (46.8150 + t * (0.00059 - t * 0.001813))
    e0 = 23 + (26 + (seconds / 60)) / 60

    ra = atan2(cos(e0 * DEG_TO_RAD) * sin(o * DEG_TO_RAD), cos(o * DEG_TO_RAD)) # (radians)
    decl = asin(sin(e0 * DEG_TO_RAD) * sin(o * DEG_TO_RAD)) # (radians)

    return ra, decl

def hour_angle(dt, longit):
    # @input UTC time (datetime)
    # @input longitude (float, negative west of Greenwich)
    # @output hour angle, in degrees (float)

    # get gregorian time including fractional day
    y = dt.year
    m = dt.month
    d = dt.day + ((dt.second / 60.0 + dt.minute) / 60 + dt.hour) / 24.0 

    # get right ascention
    ra, _ = coords(y, m, d)

    # get julian day (AA ch7)
    if m <= 2:
        y -= 1
        m += 12
    a = y / 100
    b = 2 - a + a / 4
    jd = int(365.25 * (y + 4716)) + int(30.6 * (m + 1)) + d + b - 1524.5

    # get sidereal time at greenwich (AA ch12)
    t = (jd - 2451545.0) / 36525
    theta = 280.46061837 + 360.98564736629 * (jd - 2451545) \
            + .000387933 * t**2 - t**3 / 38710000

    # hour angle (AA ch13)
    ha = (theta + longit - ra / DEG_TO_RAD) % 360

    return ha

def main():
    if len(sys.argv) != 4:
        print 'Usage: hour_angle.py [YYYY/MM/DD] [HH:MM:SS] [longitude]'
        sys.exit()
    else:
        dt = datetime.strptime(sys.argv[1] + ' ' + sys.argv[2], '%Y/%m/%d %H:%M:%S')
        longit = float(sys.argv[3])
    ha = hour_angle(dt, longit)
    # convert hour angle to timedelta from noon
    days = ha / 360
    if days > 0.5:
        days -= 0.5
    td = timedelta(days=days)
    # make solar time
    solar_time = datetime.combine(dt.date(), time(12)) + td
    print solar_time

if __name__ == '__main__':
    main()
like image 63
mattexx Avatar answered Oct 27 '22 17:10

mattexx