I'm wondering if there is a python function/module that calculates the local time after midnight (or local solar time) given the UTC time and longitude? It doesn't need to take into account daylight saving time.
Thanks in advance.
To determine Lst, multiply the difference in time between local standard clock time and Greenwich Mean Time (GMT) by 15°. This relationship comes from the fact that the sun takes 4 minutes to traverse 1° of longitude. Thus, if your local standard clock is 1 hour behind GMT then LST is 15°.
The solar hour angle is referenced to solar noon. Earth rotates through 15 degrees in each hour. The standard convention used is that the solar hour angle is negative before solar noon. So 14:00 hours LAT represents a solar hour angle of 30 degrees, and 10:00 hours LAT represents a solar hour angle of –30 degrees.
Local mean time (LMT) is a form of solar time that corrects the variations of local apparent time, forming a uniform time scale at a specific longitude.
"Local solar time" (or simply "solar time") is the time according to the position of the sun in the sky relative to one specific location on the ground. In solar time, the sun is always due south (or north) at exactly noon.
I took a look at Jean Meeus' Astronomical Algorithms. I think you might be asking for local hour angle, which can be expressed in time (0-24hr), degrees (0-360) or radians (0-2pi).
I'm guessing you can do this with ephem. But just for the heck of it, here's some python:
#!/usr/local/bin/python
import sys
from datetime import datetime, time, timedelta
from math import pi, sin, cos, atan2, asin
# helpful constant
DEG_TO_RAD = pi / 180
# hardcode difference between Dynamical Time and Universal Time
# delta_T = TD - UT
# This comes from IERS Bulletin A
# ftp://maia.usno.navy.mil/ser7/ser7.dat
DELTA = 35.0
def coords(yr, mon, day):
# @input year (int)
# @input month (int)
# @input day (float)
# @output right ascention, in radians (float)
# @output declination, in radians (float)
# get julian day (AA ch7)
day += DELTA / 60 / 60 / 24 # use dynamical time
if mon <= 2:
yr -= 1
mon += 12
a = yr / 100
b = 2 - a + a / 4
jd = int(365.25 * (yr + 4716)) + int(30.6 * (mon + 1)) + day + b - 1524.5
# get sidereal time at greenwich (AA ch12)
t = (jd - 2451545.0) / 36525
# Calculate mean equinox of date (degrees)
l = 280.46646 + 36000.76983 * t + 0.0003032 * t**2
while (l > 360):
l -= 360
while (l < 0):
l += 360
# Calculate mean anomoly of sun (degrees)
m = 357.52911 + 35999.05029 * t - 0.0001537 * t**2
# Calculate eccentricity of Earth's orbit
e = 0.016708634 - 0.000042037 * t - 0.0000001267 * t**2
# Calculate sun's equation of center (degrees)
c = (1.914602 - 0.004817 * t - .000014 * t**2) * sin(m * DEG_TO_RAD) \
+ (0.019993 - .000101 * t) * sin(2 * m * DEG_TO_RAD) \
+ 0.000289 * sin(3 * m * DEG_TO_RAD)
# Calculate the sun's radius vector (AU)
o = l + c # sun's true longitude (degrees)
v = m + c # sun's true anomoly (degrees)
r = (1.000001018 * (1 - e**2)) / (1 + e * cos(v * DEG_TO_RAD))
# Calculate right ascension & declination
seconds = 21.448 - t * (46.8150 + t * (0.00059 - t * 0.001813))
e0 = 23 + (26 + (seconds / 60)) / 60
ra = atan2(cos(e0 * DEG_TO_RAD) * sin(o * DEG_TO_RAD), cos(o * DEG_TO_RAD)) # (radians)
decl = asin(sin(e0 * DEG_TO_RAD) * sin(o * DEG_TO_RAD)) # (radians)
return ra, decl
def hour_angle(dt, longit):
# @input UTC time (datetime)
# @input longitude (float, negative west of Greenwich)
# @output hour angle, in degrees (float)
# get gregorian time including fractional day
y = dt.year
m = dt.month
d = dt.day + ((dt.second / 60.0 + dt.minute) / 60 + dt.hour) / 24.0
# get right ascention
ra, _ = coords(y, m, d)
# get julian day (AA ch7)
if m <= 2:
y -= 1
m += 12
a = y / 100
b = 2 - a + a / 4
jd = int(365.25 * (y + 4716)) + int(30.6 * (m + 1)) + d + b - 1524.5
# get sidereal time at greenwich (AA ch12)
t = (jd - 2451545.0) / 36525
theta = 280.46061837 + 360.98564736629 * (jd - 2451545) \
+ .000387933 * t**2 - t**3 / 38710000
# hour angle (AA ch13)
ha = (theta + longit - ra / DEG_TO_RAD) % 360
return ha
def main():
if len(sys.argv) != 4:
print 'Usage: hour_angle.py [YYYY/MM/DD] [HH:MM:SS] [longitude]'
sys.exit()
else:
dt = datetime.strptime(sys.argv[1] + ' ' + sys.argv[2], '%Y/%m/%d %H:%M:%S')
longit = float(sys.argv[3])
ha = hour_angle(dt, longit)
# convert hour angle to timedelta from noon
days = ha / 360
if days > 0.5:
days -= 0.5
td = timedelta(days=days)
# make solar time
solar_time = datetime.combine(dt.date(), time(12)) + td
print solar_time
if __name__ == '__main__':
main()
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With