I am trying to do in Julia what this Python code does. (Find all pairs from the two lists whose combined value is above 7.)
#Python
def sum_is_large(a, b):
return a + b > 7
l1 = [1,2,3]
l2 = [4,5,6]
l3 = [(a,b) for a in l1 for b in l2 if sum_is_large(a, b)]
print(l3)
There is no if
for list comprehensions in Julia. And if I use filter()
, I'm not sure if I can pass two arguments. So my best suggestion is this:
#Julia
function sum_is_large(pair)
a, b = pair
return a + b > 7
end
l1 = [1,2,3]
l2 = [4,5,6]
l3 = filter(sum_is_large, [(i,j) for i in l1, j in l2])
print(l3)
I don't find this very appealing. So my question is, is there a better way in Julia?
A tuple comprehension is considered to be less fundamental than a list comprehension. So there is no special syntax dedicated for the same. Yet, if you want a tuple after applying comprehension, it can be achieved by wrapping a tuple around a generator object.
Tuples in Julia are an immutable collection of distinct values of same or different datatypes separated by commas. Tuples are more like arrays in Julia except that arrays only take values of similar datatypes. The values of a tuple can not be changed because tuples are immutable.
There is no real tuple comprehension in Python. We can get very close to it in terms of syntax if we use the tuple class and generator tuple(i for i in iterable) . But it is slower than list comprehensions.
Guards (if
) are now available in Julia v0.5 (currently in the release-candidate stage):
julia> v1 = [1, 2, 3];
julia> v2 = [4, 5, 6];
julia> v3 = [(a, b) for a in v1, b in v2 if a+b > 7]
3-element Array{Tuple{Int64,Int64},1}:
(3,5)
(2,6)
(3,6)
Note that generators are also now available:
julia> g = ( (a, b) for a in v1, b in v2 if a+b > 7 )
Base.Generator{Filter{##18#20,Base.Prod2{Array{Int64,1},Array{Int64,1}}},##17#19}(#17,Filter{##18#20,Base.Prod2{Array{Int64,1},Array{Int64,1}}}(#18,Base.Prod2{Array{Int64,1},Array{Int64,1}}([1,2,3],[4,5,6])))
Another option similar to the one of @DanGetz using also Iterators.jl
:
function expensive_fun(a, b)
return (a + b)
end
Then, if the condition is also complicated, it can be defined as a function:
condition(x) = x > 7
And last, filter the results:
>>> using Iterators
>>> result = filter(condition, imap(expensive_fun, l1, l2))
result
is an iterable that is only computed when needed (inexpensive) and can be collected collect(result)
if required.
The one-line if the filter condition is simple enough would be:
>>> result = filter(x->(x > 7), imap(expensive_fun, l1, l2))
Note: imap
works natively for arbitrary number of parameters.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With