I wrote this F# function to partition a list up to a certain point and no further -- much like a cross between takeWhile
and partition
.
let partitionWhile c l =
let rec aux accl accr =
match accr with
| [] -> (accl, [])
| h::t ->
if c h then
aux (h::accl) t
else
(accl, accr)
aux [] l
The only problem is that the "taken" items are reversed:
> partitionWhile ((>=) 5) [1..10];;
val it : int list * int list = ([5; 4; 3; 2; 1], [6; 7; 8; 9; 10])
Other than resorting to calling rev
, is there a way this function could be written that would have the first list be in the correct order?
The recursive approach to reverse a linked list is simple, just we have to divide the linked lists in two parts and i.e first node and the rest of the linked list, and then call the recursion for the other part by maintaining the connection.
Given a linked list and a value x, partition it such that all nodes less than x come first, then all nodes with a value equal to x, and finally nodes with a value greater than or equal to x. The original relative order of the nodes in each of the three partitions should be preserved.
Here's a continuation-based version. It's tail-recursive and returns the list in the original order.
let partitionWhileCps c l =
let rec aux f = function
| h::t when c h -> aux (fun (acc, l) -> f ((h::acc), l)) t
| l -> f ([], l)
aux id l
Here are some benchmarks to go along with the discussion following Brian's answer (and the accumulator version for reference):
let partitionWhileAcc c l =
let rec aux acc = function
| h::t when c h -> aux (h::acc) t
| l -> (List.rev acc, l)
aux [] l
let test =
let l = List.init 10000000 id
(fun f ->
let r = f ((>) 9999999) l
printfn "%A" r)
test partitionWhileCps // Real: 00:00:06.912, CPU: 00:00:07.347, GC gen0: 78, gen1: 65, gen2: 1
test partitionWhileAcc // Real: 00:00:03.755, CPU: 00:00:03.790, GC gen0: 52, gen1: 50, gen2: 1
Cps
averaged ~7s, Acc
~4s. In short, continuations buy you nothing for this exercise.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With