I am trying to determine the point at which a line segment intersect a circle. For example, given any point between P0 and P3 (And also assuming that you know the radius), what is the easiest method to determine P3?
Go for this code..its save the time
private boolean circleLineIntersect(float x1, float y1, float x2, float y2, float cx, float cy, float cr ) {
float dx = x2 - x1;
float dy = y2 - y1;
float a = dx * dx + dy * dy;
float b = 2 * (dx * (x1 - cx) + dy * (y1 - cy));
float c = cx * cx + cy * cy;
c += x1 * x1 + y1 * y1;
c -= 2 * (cx * x1 + cy * y1);
c -= cr * cr;
float bb4ac = b * b - 4 * a * c;
// return false No collision
// return true Collision
return bb4ac >= 0;
}
Generally,
In pseudocode,
theta = atan2(P1.y-P0.y, P1.x-P0.x)
P3.x = P0.x + r * cos(theta)
P3.y = P0.y + r * sin(theta)
From the center of the circle and the radius you can write the equation describing the circle. From the two points P0 and P1 you can write the equation describing the line.
So you have 2 equations in 2 unknowns, which you can solved through substitution.
Let (x0,y0) = coordinates of the point P0
And (x1,y1) = coordinates of the point P1
And r = the radius of the circle.
The equation for the circle is:
(x-x0)^2 + (y-y0)^2 = r^2
The equation for the line is:
(y-y0) = M(x-x0) // where M = (y1-y0)/(x1-x0)
Plugging the 2nd equation into the first gives:
(x-x0)^2*(1 + M^2) = r^2
x - x0 = r/sqrt(1+M^2)
Similarly you can find that
y - y0 = r/sqrt(1+1/M^2)
The point (x,y) is the intersection point between the line and the circle, (x,y) is your answer.
P3 = (x0 + r/sqrt(1+M^2), y0 + r/sqrt(1+1/M^2))
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With