Can some one please explain GROUP
,SOURCE
,VALUE
and TARGET
in Les Misérables Co-occurrence matrix and how they are interlinked.
I tried the existing example by taking 5 characters, but could not link the source, target and values.
Also if any one has tried other input data(json data) than the standard example 'miserables.json' please share so that i can get good understanding to put my data and see the visualization.
Thanks in Advance
I was also interested in this task, and here's what I came up with. First I created the json that would be fed into the visualization, using Python (sample json). The json should have the following form:
{ "nodes": [
{"name":node_name, "group":node_group},
{"name":another_node_name, "group":another_node_group}, ...
],
"links":[
{"source"link_source, "target":link_target, "value":link_value,
{"source"another_link_source, "target":another_link_target, "value":another_link_value}, ...
]
}
Then it's just a matter of pointing your application to your json files. I used Python's Flask library to create a simple server that could serve my json files:
#!flask/bin/python
from flask import Flask, jsonify, request, Response
from flask.ext.cors import CORS
import json
application = Flask(__name__)
# Utilize CORS to allow cross-origin API requests
cors = CORS(application)
#############################
# Network Visualization App #
#############################
@application.route('/api/json/<request>', methods=['GET'])
def parse_json_request(request):
with open("json/" + request, 'r') as json_in:
cooccurrence_json = json.load(json_in)
return jsonify(cooccurrence_json)
@application.errorhandler(404)
def page_not_found(e):
return "Sorry, the page you requested could not be found."
if __name__ == '__main__':
application.run(debug=True)
I then uploaded the server and my json to Amazon Web Services, used this Elastic Beanstalk tutorial to deploy the application, and modified the javascript code in the following way:
<!DOCTYPE html>
<html class="ocks-org do-not-copy">
<meta charset="utf-8">
<title>Dramatic Co-occurrence</title>
<style>
@import url(../style.css?aea6f0a);
d3_plot {
font-size: 80%;
}
body.svg {
margin-left: 0px;
}
.background {
fill: #eee;
}
line {
stroke: #fff;
}
text.active {
fill: red;
}
</style>
<script type="text/javascript" src="http://d3js.org/d3.v2.min.js?2.8.1"></script>
<script type="text/javascript" src="http://code.jquery.com/jquery-1.7.2.min.js"></script>
<header>
</header>
<h1>Character Co-occurrence in Shakespearean Drama</h1>
<aside style="margin-top:20px;">
<p>Play:
<select id="selected_json">
<option value='"http://tdm-api-dev.elasticbeanstalk.com/api/json/king_henry_the_fifth.json"'>Henry VIII</option>
<option value='"http://tdm-api-dev.elasticbeanstalk.com/api/json/romeo_and_juliet.json"'>Romeo and Juliet</option>
<option value='"http://tdm-api-dev.elasticbeanstalk.com/api/json/hamlet.json"'>Hamlet</option>
</select>
<i> </i>
Order:
<select id="order">
<option value="name">by Name</option>
<option value="count">by Frequency</option>
<option value="group">by Cluster</option>
</select>
<p>This application visualizes the degree to which characters in Shakespeare's plays appear together.
<p>Each colored cell represents two characters that appeared in the same scene, and darker cells indicate characters that co-occurred more frequently.
<p>Use the drop-down menus to select a different play, reorder the matrix, and explore the data.
<p>Built with data from ProQuest's Chadwyck Healey <a href="http://www.proquest.com/products-services/literature_online.html">Literature Online Collections</a>.
</aside>
<d3_plot></d3_plot>
<script>
function select_json(new_json) {
var margin = {
top: 120,
right: 0,
bottom: 10,
left: 160
},
width = 800,
height = 800;
var x = d3.scale.ordinal().rangeBands([0, width]),
z = d3.scale.linear().domain([0, 4]).clamp(true),
c = d3.scale.category10().domain(d3.range(10));
var svg = d3.select("d3_plot").append("svg")
.attr("width", width + margin.left + margin.right)
.attr("height", height + margin.top + margin.bottom)
.style("margin-left", "0px")
.append("g")
.attr("transform", "translate(" + margin.left + "," + margin.top + ")");
// Based on the user-selected input text above, make the appropriate api call and retrieve the json
d3.json(new_json, function(miserables) {
console.log(new_json)
var matrix = [],
nodes = miserables.nodes,
n = nodes.length;
// Compute index per node.
nodes.forEach(function(node, i) {
node.index = i;
node.count = 0;
matrix[i] = d3.range(n).map(function(j) {
return {
x: j,
y: i,
z: 0
};
});
});
// Convert links to matrix; count character occurrences.
miserables.links.forEach(function(link) {
matrix[link.source][link.target].z += link.value;
matrix[link.target][link.source].z += link.value;
matrix[link.source][link.source].z += link.value;
matrix[link.target][link.target].z += link.value;
nodes[link.source].count += link.value;
nodes[link.target].count += link.value;
});
// Precompute the orders.
var orders = {
name: d3.range(n).sort(function(a, b) {
return d3.ascending(nodes[a].name, nodes[b].name);
}),
count: d3.range(n).sort(function(a, b) {
return nodes[b].count - nodes[a].count;
}),
group: d3.range(n).sort(function(a, b) {
return nodes[b].group - nodes[a].group;
})
};
// The default sort order.
x.domain(orders.name);
svg.append("rect")
.attr("class", "background")
.attr("width", width)
.attr("height", height);
var row = svg.selectAll(".row")
.data(matrix)
.enter().append("g")
.attr("class", "row")
.attr("transform", function(d, i) {
return "translate(0," + x(i) + ")";
})
.each(row);
row.append("line")
.attr("x2", width);
row.append("text")
.attr("x", -6)
.attr("y", x.rangeBand() / 2)
.attr("dy", ".32em")
.attr("text-anchor", "end")
.text(function(d, i) {
return nodes[i].name;
});
var column = svg.selectAll(".column")
.data(matrix)
.enter().append("g")
.attr("class", "column")
.attr("transform", function(d, i) {
return "translate(" + x(i) + ")rotate(-90)";
});
column.append("line")
.attr("x1", -width);
column.append("text")
.attr("x", 6)
.attr("y", x.rangeBand() / 2)
.attr("dy", ".32em")
.attr("text-anchor", "start")
.text(function(d, i) {
return nodes[i].name;
});
function row(row) {
var cell = d3.select(this).selectAll(".cell")
.data(row.filter(function(d) {
return d.z;
}))
.enter().append("rect")
.attr("class", "cell")
.attr("x", function(d) {
return x(d.x);
})
.attr("width", x.rangeBand())
.attr("height", x.rangeBand())
.style("fill-opacity", function(d) {
return z(d.z);
})
.style("fill", function(d) {
return nodes[d.x].group == nodes[d.y].group ? c(nodes[d.x].group) : null;
})
.on("mouseover", mouseover)
.on("mouseout", mouseout);
}
function mouseover(p) {
d3.selectAll(".row text").classed("active", function(d, i) {
return i == p.y;
});
d3.selectAll(".column text").classed("active", function(d, i) {
return i == p.x;
});
}
function mouseout() {
d3.selectAll("text").classed("active", false);
}
d3.select("#order").on("change", function() {
clearTimeout(timeout);
order(this.value);
});
function order(value) {
x.domain(orders[value]);
var t = svg.transition().duration(2500);
t.selectAll(".row")
.delay(function(d, i) {
return x(i) * 4;
})
.attr("transform", function(d, i) {
return "translate(0," + x(i) + ")";
})
.selectAll(".cell")
.delay(function(d) {
return x(d.x) * 4;
})
.attr("x", function(d) {
return x(d.x);
});
t.selectAll(".column")
.delay(function(d, i) {
return x(i) * 4;
})
.attr("transform", function(d, i) {
return "translate(" + x(i) + ")rotate(-90)";
});
}
var timeout = setTimeout(function() {
order("group");
d3.select("#order").property("selectedIndex", 2).node().focus();
}, 5000);
});
}
// set initial json selection
select_json("http://tdm-api-dev.elasticbeanstalk.com/api/json/king_henry_the_fifth.json");
// handle on click event
d3.select('#selected_json').on('change', function() {
// erase old image
d3.select("svg").remove();
var new_json = eval(d3.select(this).property('value'));
select_json(new_json);
});
</script>
[1]: http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create-deploy-python-flask.html
This produced a webpage that looks like the image below, which you can see in action here. I hope this helps others!
P.S. While making the page, I found it extremely helpful to open my html in Chrome, then use more tools --> developer tools
to help me debug errors in the javascript.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With