Python 2.7.10
Tried pandas 0.17.1 -- function read_excel
Tried pyexcel 0.1.7 + pyexcel-xlsx 0.0.7 -- function get_records()
When using pandas in Python is it possible to read excel files (formats: xls, xlsx) and leave columns containing date or date + time values as strings rather than auto-converting to datetime.datetime
or timestamp
types?
If this is not possible using pandas can someone suggest an alternate method/library to read xls, xlsx files and leave date column values as strings?
For the pandas solution attempts the df.info()
and resulting date column types are shown below:
>>> df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 117 entries, 0 to 116
Columns: 176 entries, Mine to Index
dtypes: datetime64[ns](2), float64(145), int64(26), object(3)
memory usage: 161.8+ KB
>>> type(df['Start Date'][0])
Out[6]: pandas.tslib.Timestamp
>>> type(df['End Date'][0])
Out[7]: pandas.tslib.Timestamp
Attempt/Approach 1:
def read_as_dataframe(filename, ext):
import pandas as pd
if ext in ('xls', 'xlsx'):
# problem: date columns auto converted to datetime.datetime or timestamp!
df = pd.read_excel(filename) # unwanted - date columns converted!
return df, name, ext
Attempt/Approach 2:
import pandas as pd
# import datetime as datetime
# parse_date = lambda x: datetime.strptime(x, '%Y%m%d %H')
parse_date = lambda x: x
elif ext in ('xls', 'xlsx', ):
df = pd.read_excel(filename, parse_dates=False)
date_cols = [df.columns.get_loc(c) for c in df.columns if c in ('Start Date', 'End Date')]
# problem: date columns auto converted to datetime.datetime or timestamp!
df = pd.read_excel(filename, parse_dates=date_cols, date_parser=parse_date)
And have also tried pyexcel library but it does the same auto-magic convert behavior:
Attempt/Approach 3:
import pyexcel as pe
import pyexcel.ext.xls
import pyexcel.ext.xlsx
t0 = time.time()
if ext == 'xlsx':
records = pe.get_records(file_name=filename)
for record in records:
print("start date = %s (type=%s), end date = %s (type=%s)" %
(record['Start Date'],
str(type(record['Start Date'])),
record['End Date'],
str(type(record['End Date'])))
)
I ran into an identical problem, except pandas was oddly converting only some cells into datetimes. I ended up manually converting each cell into a string like so:
def undate(x):
if pd.isnull(x):
return x
try:
return x.strftime('%d/%m/%Y')
except AttributeError:
return x
except Exception:
raise
for i in list_of_possible_date_columns:
df[i] = df[i].apply(undate)
pandas.read_excel(xlsx, sheet, converters={'Date': str})
df['Date'][0].strftime('%Y/%m/%d')
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With