I had created a custom function to plot regression diagnostics as with these version of ggplot2 & gridextra under:
ggplot2 * 1.0.1 2015-03-17 CRAN (R 3.2.1)
gridExtra * 2.0.0 2015-07-14 CRAN (R 3.2.1)
head(dadHospital)
SL. BODY.WEIGHT TOTAL.COST.TO.HOSPITAL
## 1 1 49 660293
## 2 2 41 809130
## 3 3 47 362231
## 4 4 80 629990
## 5 5 58 444876
## 6 6 45 372357
fit1<-lm(TOTAL.COST.TO.HOSPITAL~BODY.WEIGHT,data=dadHospital)
#custom function of plotting model diagnostics using ggplot2
library(ggplot2)
diagPlot<-function(model){
p1<-ggplot(model, aes(.fitted, .resid))+geom_point()
p1<-p1+stat_smooth(method="loess")+geom_hline(yintercept=0, col="red", linetype="dashed")
p1<-p1+xlab("Fitted values")+ylab("Residuals")
p1<-p1+ggtitle("Residual vs Fitted Plot")+theme_bw()
p2<-ggplot(model, aes(qqnorm(.stdresid)[[1]], .stdresid))+geom_point(na.rm = TRUE)
p2<-p2+geom_abline(aes(qqline(.stdresid)))+xlab("Theoretical Quantiles")+ylab("Standardized Residuals")
p2<-p2+ggtitle("Normal Q-Q")+theme_bw()
p3<-ggplot(model, aes(.fitted, sqrt(abs(.stdresid))))+geom_point(na.rm=TRUE)
p3<-p3+stat_smooth(method="loess", na.rm = TRUE)+xlab("Fitted Value")
p3<-p3+ylab(expression(sqrt("|Standardized residuals|")))
p3<-p3+ggtitle("Scale-Location")+theme_bw()
p4<-ggplot(model, aes(seq_along(.cooksd), .cooksd))+geom_bar(stat="identity", position="identity")
p4<-p4+xlab("Obs. Number")+ylab("Cook's distance")
p4<-p4+ggtitle("Cook's distance")+theme_bw()
p5<-ggplot(model, aes(.hat, .stdresid))+geom_point(aes(size=.cooksd), na.rm=TRUE)
p5<-p5+stat_smooth(method="loess", na.rm=TRUE)
p5<-p5+xlab("Leverage")+ylab("Standardized Residuals")
p5<-p5+ggtitle("Residual vs Leverage Plot")
p5<-p5+scale_size_continuous("Cook's Distance", range=c(1,5))
p5<-p5+theme_bw()+theme(legend.position="bottom")
p6<-ggplot(model, aes(.hat, .cooksd))+geom_point(na.rm=TRUE)+stat_smooth(method="loess", na.rm=TRUE)
p6<-p6+xlab("Leverage hii")+ylab("Cook's Distance")
p6<-p6+ggtitle("Cook's dist vs Leverage hii/(1-hii)")
p6<-p6+geom_abline(slope=seq(0,3,0.5), color="gray", linetype="dashed")
p6<-p6+theme_bw()
return(list(rvfPlot=p1, qqPlot=p2, sclLocPlot=p3, cdPlot=p4, rvlevPlot=p5, cvlPlot=p6))
}
par(mfrow=c(1,1))
diagPlts<-diagPlot(fit1)
#To display the plots in a grid, some packages mentioned above should be installed.
library(gridExtra)
grid.arrange(diagPlts$rvfPlot,diagPlts$qqPlot,diagPlts$sclLocPlot,diagPlts$cdPlot,diagPlts$rvlevPlot,diagPlts$cvlPlot,ncol=3)
Now With the latest version of ggplot2
2.0.0
if I run the same function I get this error:
Error: Aesthetics must be either length 1 or the same as the data (248): x
I need some help. I assume with latest ggplot2
version, some changes have been introduced to aes
argument, which I am not aware.
While debugging i get the error here....
p2<-ggplot(fit1, aes(qqnorm(.stdresid)[[1]], .stdresid))+geom_point(na.rm = TRUE)
p2<-p2+geom_abline(aes(qqline(.stdresid)))+xlab("Theoretical Quantiles")+ylab("Standardized Residuals")
p2<-p2+ggtitle("Normal Q-Q")+theme_bw()
p2
Error: Aesthetics must be either length 1 or the same as the data (248): x
You can replace your code for the p2
withe special geom_qq()
that makes the same plot.
p2<-ggplot(model,aes(sample=.stdresid))+geom_qq()
p2<-geom_abline()+xlab("Theoretical Quantiles")+ylab("Standardized Residuals")
p2<-p2+ggtitle("Normal Q-Q")+theme_bw()
For your existing code you just need to remove aes()
part from the geom_abline()
.
p2<-ggplot(model, aes(qqnorm(.stdresid)[[1]], .stdresid))+geom_point(na.rm = TRUE)
p2<-p2+geom_abline()+xlab("Theoretical Quantiles")+ylab("Standardized Residuals")
p2<-p2+ggtitle("Normal Q-Q")+theme_bw()
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With