I want to tridiagonalize a real symmetric matrix using Fortran and LAPACK. LAPACK basically provides two routines, one operating on the full matrix, the other on the matrix in packed storage. While the latter surely uses less memory, I was wondering if anything can be said about the speed difference?
It's an empirical question, of course: but in general, nothing comes for free, and less memory/more runtime is a pretty common tradeoff.
In this case, the indexing for the data is more complex for the packed case, so as you traverse the matrix, the cost of getting your data is a little higher. (Complicating this picture is that for symmetric matrices, the lapack routines also assume a certain kind of packing - that you only have the upper or lower component of the matrix available).
I was messing around with an eigenproblem earlier today, so I'll use that as a measurement benchmark; trying with a simple symmetric test case (The Herdon matrix, from http://people.sc.fsu.edu/~jburkardt/m_src/test_mat/test_mat.html ), and comparing ssyevd
with sspevd
$ ./eigen2 500
Generating a Herdon matrix:
Unpacked array:
Eigenvalues L_infty err = 1.7881393E-06
Packed array:
Eigenvalues L_infty err = 3.0994415E-06
Packed time: 2.800000086426735E-002
Unpacked time: 2.500000037252903E-002
$ ./eigen2 1000
Generating a Herdon matrix:
Unpacked array:
Eigenvalues L_infty err = 4.5299530E-06
Packed array:
Eigenvalues L_infty err = 5.8412552E-06
Packed time: 0.193900004029274
Unpacked time: 0.165000006556511
$ ./eigen2 2500
Generating a Herdon matrix:
Unpacked array:
Eigenvalues L_infty err = 6.1988831E-06
Packed array:
Eigenvalues L_infty err = 8.4638596E-06
Packed time: 3.21040010452271
Unpacked time: 2.70149993896484
There's about an 18% difference, which I must admit is larger than I expected (also with a slightly larger error for the packed case?). This is with intel's MKL. The performance difference will depend on your matrix in general, of course, as eriktous points out, and on the problem you're doing; the more random access to the matrix you have to do, the worse the overhead would be. The code I used is as follows:
program eigens
implicit none
integer :: nargs,n ! problem size
real, dimension(:,:), allocatable :: A, B, Z
real, dimension(:), allocatable :: PA
real, dimension(:), allocatable :: work
integer, dimension(:), allocatable :: iwork
real, dimension(:), allocatable :: eigenvals, expected
real :: c, p
integer :: worksize, iworksize
character(len=100) :: nstr
integer :: unpackedclock, packedclock
double precision :: unpackedtime, packedtime
integer :: i,j,info
! get filename
nargs = command_argument_count()
if (nargs /= 1) then
print *,'Usage: eigen2 n'
print *,' Where n = size of array'
stop
endif
call get_command_argument(1, nstr)
read(nstr,'(I)') n
if (n < 4 .or. n > 25000) then
print *, 'Invalid n ', nstr
stop
endif
! Initialize local arrays
allocate(A(n,n),B(n,n))
allocate(eigenvals(n))
! calculate the matrix - unpacked
print *, 'Generating a Herdon matrix: '
A = 0.
c = (1.*n * (1.*n + 1.) * (2.*n - 5.))/6.
forall (i=1:n-1,j=1:n-1)
A(i,j) = -1.*i*j/c
endforall
forall (i=1:n-1)
A(i,i) = (c - 1.*i*i)/c
A(i,n) = 1.*i/c
endforall
forall (j=1:n-1)
A(n,j) = 1.*j/c
endforall
A(n,n) = -1./c
B = A
! expected eigenvalues
allocate(expected(n))
p = 3. + sqrt((4. * n - 3.) * (n - 1.)*3./(n+1.))
expected(1) = p/(n*(5.-2.*n))
expected(2) = 6./(p*(n+1.))
expected(3:n) = 1.
print *, 'Unpacked array:'
allocate(work(1),iwork(1))
call ssyevd('N','U',n,A,n,eigenvals,work,-1,iwork,-1,info)
worksize = int(work(1))
iworksize = int(work(1))
deallocate(work,iwork)
allocate(work(worksize),iwork(iworksize))
call tick(unpackedclock)
call ssyevd('N','U',n,A,n,eigenvals,work,worksize,iwork,iworksize,info)
unpackedtime = tock(unpackedclock)
deallocate(work,iwork)
if (info /= 0) then
print *, 'Error -- info = ', info
endif
print *,'Eigenvalues L_infty err = ', maxval(eigenvals-expected)
! pack array
print *, 'Packed array:'
allocate(PA(n*(n+1)/2))
allocate(Z(n,n))
do i=1,n
do j=i,n
PA(i+(j-1)*j/2) = B(i,j)
enddo
enddo
allocate(work(1),iwork(1))
call sspevd('N','U',n,PA,eigenvals,Z,n,work,-1,iwork,-1,info)
worksize = int(work(1))
iworksize = iwork(1)
deallocate(work,iwork)
allocate(work(worksize),iwork(iworksize))
call tick(packedclock)
call sspevd('N','U',n,PA,eigenvals,Z,n,work,worksize,iwork,iworksize,info)
packedtime = tock(packedclock)
deallocate(work,iwork)
deallocate(Z,A,B,PA)
if (info /= 0) then
print *, 'Error -- info = ', info
endif
print *,'Eigenvalues L_infty err = ', &
maxval(eigenvals-expected)
deallocate(eigenvals, expected)
print *,'Packed time: ', packedtime
print *,'Unpacked time: ', unpackedtime
contains
subroutine tick(t)
integer, intent(OUT) :: t
call system_clock(t)
end subroutine tick
! returns time in seconds from now to time described by t
real function tock(t)
integer, intent(in) :: t
integer :: now, clock_rate
call system_clock(now,clock_rate)
tock = real(now - t)/real(clock_rate)
end function tock
end program eigens
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With