I have the following code running inside a Jupyter notebook:
# Visualize training history
from keras.models import Sequential
from keras.layers import Dense
import matplotlib.pyplot as plt
import numpy
# fix random seed for reproducibility
seed = 7
numpy.random.seed(seed)
# load pima indians dataset
dataset = numpy.loadtxt("pima-indians-diabetes.csv", delimiter=",")
# split into input (X) and output (Y) variables
X = dataset[:,0:8]
Y = dataset[:,8]
# create model
model = Sequential()
model.add(Dense(12, input_dim=8, kernel_initializer='uniform', activation='relu'))
model.add(Dense(8, kernel_initializer='uniform', activation='relu'))
model.add(Dense(1, kernel_initializer='uniform', activation='sigmoid'))
# Compile model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# Fit the model
history = model.fit(X, Y, validation_split=0.33, epochs=150, batch_size=10, verbose=0)
# list all data in history
print(history.history.keys())
# summarize history for accuracy
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
# summarize history for loss
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
The code collects epochs history, then displays the progress history.
Q: How can I make the chart change while training so I can see the changes in real time?
Training usually takes between 2-8 hours depending on the number of files and queued models for training.
Select the Graphs dashboard by tapping “Graphs” at the top. You can also optionally use TensorBoard. dev to create a hosted, shareable experiment. By default, TensorBoard displays the op-level graph.
The right number of epochs depends on the inherent perplexity (or complexity) of your dataset. A good rule of thumb is to start with a value that is 3 times the number of columns in your data. If you find that the model is still improving after all epochs complete, try again with a higher value.
val_loss is the value of cost function for your cross-validation data and loss is the value of cost function for your training data. On validation data, neurons using drop out do not drop random neurons. The reason is that during training we use drop out in order to add some noise for avoiding over-fitting.
There is livelossplot Python package for live training loss plots in Jupyter Notebook for Keras (disclaimer: I am the author).
from livelossplot import PlotLossesKeras
model.fit(X_train, Y_train,
epochs=10,
validation_data=(X_test, Y_test),
callbacks=[PlotLossesKeras()],
verbose=0)
To see how does it work, look at its source, especially this file: https://github.com/stared/livelossplot/blob/master/livelossplot/outputs/matplotlib_plot.py (from IPython.display import clear_output
and clear_output(wait=True)
).
A fair disclaimer: it does interfere with Keras output.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With