I'm loading dummy data into a neural network, but I'm receiving an error I can't seem to debug:
Here is my data, visualized:
df:
Label Mar
0 | [[.332, .326], [.058, .138]]
0 | [[.234, .246], [.234, .395]]
1 | [[.084, .23], [.745, .923]],
I'm trying to use the 'Mar' column to predict the 'Label' column (I know this data makes no sense, its just similar to my real data). Here is my neural network code:
model = Sequential()
model.add(Dense(3, input_dim=(1), activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
X = df['Mar']
Y = pd.get_dummies(df['Label'])
model.fit(X, Y, epochs=150, batch_size=10)
Here is the code to create my sample data:
Sample = [{'Label': 0, 'Mar': [[.332, .326], [.058, .138]]},
{'Label': 0, 'Mar': [[.234, .246], [.013, .592]]},
{'Label': 1, 'Mar': [[.084, .23], [.745, .923]]}]
df = pd.DataFrame(Sample)
When I get to the final row of this code, I get this error:
Epoch 1/150
-----------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-271-3d2506918d89> in <module>()
----> 1 model.fit(X, Y, epochs=150, batch_size=10)
/usr/local/lib/python2.7/site-packages/keras/models.pyc in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, **kwargs)
854 class_weight=class_weight,
855 sample_weight=sample_weight,
--> 856 initial_epoch=initial_epoch)
857
858 def evaluate(self, x, y, batch_size=32, verbose=1,
/usr/local/lib/python2.7/site-packages/keras/engine/training.pyc in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, **kwargs)
1496 val_f=val_f, val_ins=val_ins, shuffle=shuffle,
1497 callback_metrics=callback_metrics,
-> 1498 initial_epoch=initial_epoch)
1499
1500 def evaluate(self, x, y, batch_size=32, verbose=1, sample_weight=None):
/usr/local/lib/python2.7/site-packages/keras/engine/training.pyc in _fit_loop(self, f, ins, out_labels, batch_size, epochs, verbose, callbacks, val_f, val_ins, shuffle, callback_metrics, initial_epoch)
1150 batch_logs['size'] = len(batch_ids)
1151 callbacks.on_batch_begin(batch_index, batch_logs)
-> 1152 outs = f(ins_batch)
1153 if not isinstance(outs, list):
1154 outs = [outs]
/usr/local/lib/python2.7/site-packages/keras/backend/tensorflow_backend.pyc in __call__(self, inputs)
2227 session = get_session()
2228 updated = session.run(self.outputs + [self.updates_op],
-> 2229 feed_dict=feed_dict)
2230 return updated[:len(self.outputs)]
2231
/usr/local/lib/python2.7/site-packages/tensorflow/python/client/session.pyc in run(self, fetches, feed_dict, options, run_metadata)
776 try:
777 result = self._run(None, fetches, feed_dict, options_ptr,
--> 778 run_metadata_ptr)
779 if run_metadata:
780 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)
/usr/local/lib/python2.7/site-packages/tensorflow/python/client/session.pyc in _run(self, handle, fetches, feed_dict, options, run_metadata)
952 np_val = subfeed_val.to_numpy_array()
953 else:
--> 954 np_val = np.asarray(subfeed_val, dtype=subfeed_dtype)
955
956 if (not is_tensor_handle_feed and
/usr/local/lib/python2.7/site-packages/numpy/core/numeric.pyc in asarray(a, dtype, order)
529
530 """
--> 531 return array(a, dtype, copy=False, order=order)
532
533
ValueError: setting an array element with a sequence.
I now suspect it has something to do with my input columns being list, not np arrays? However, I've tried making them into arrays first and I'm still getting the same error. Would really love and appreciate help!!
Edit I've tried one hot encoding the label field, as I found somewhere online that that may help. It hasn't helped at this point
A couple of issues here,
One possible solution would be to use keras.layers.Flatten
to reshape your data, and pd.Series.tolist()
to uniformize the data type of the input array:
model = Sequential()
model.add(Flatten(input_shape=(2,2)))
model.add(Dense(3, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
X = df['Mar'].tolist()
Y = df['Label']
model.fit(X, Y, epochs=150, batch_size=10)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With