Under the new API changes, how do you do element-wise multiplication of layers in Keras? Under the old API, I would try something like this:
merge([dense_all, dense_att], output_shape=10, mode='mul')
I've tried this (MWE):
from keras.models import Model
from keras.layers import Input, Dense, Multiply
def sample_model():
model_in = Input(shape=(10,))
dense_all = Dense(10,)(model_in)
dense_att = Dense(10, activation='softmax')(model_in)
att_mull = Multiply([dense_all, dense_att]) #merge([dense_all, dense_att], output_shape=10, mode='mul')
model_out = Dense(10, activation="sigmoid")(att_mull)
return 0
if __name__ == '__main__':
sample_model()
Full trace:
Using TensorFlow backend.
Traceback (most recent call last):
File "testJan17.py", line 13, in <module>
sample_model()
File "testJan17.py", line 8, in sample_model
att_mull = Multiply([dense_all, dense_att]) #merge([dense_all, dense_att], output_shape=10, mode='mul')
TypeError: __init__() takes exactly 1 argument (2 given)
EDIT:
I tried implementing tensorflow's elementwise multiply function. Of course, the result is not a Layer()
instance, so it doesn't work. Here's the attempt, for posterity:
def new_multiply(inputs): #assume two only - bad practice, but for illustration...
return tf.multiply(inputs[0], inputs[1])
def sample_model():
model_in = Input(shape=(10,))
dense_all = Dense(10,)(model_in)
dense_att = Dense(10, activation='softmax')(model_in) #which interactions are important?
new_mult = new_multiply([dense_all, dense_att])
model_out = Dense(10, activation="sigmoid")(new_mult)
model = Model(inputs=model_in, outputs=model_out)
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
return model
With keras
> 2.0:
from keras.layers import multiply
output = multiply([dense_all, dense_att])
Under the functional API, you just use the multiply
function, note the lowercase "m". The Multiply class is a layer as you see, intended to be used with the sequential API.
More information in https://keras.io/layers/merge/#multiply_1
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With