I am using keras and trying to plot the logs using tensorboard. Bellow you can find out the error I am getting and also the list of packages versions I am using. I can not understand it is giving me the error of 'Sequential' object has no attribute '_get_distribution_strategy'.
Package: Keras 2.3.1 Keras-Applications 1.0.8 Keras-Preprocessing 1.1.0 tensorboard 2.1.0 tensorflow 2.1.0 tensorflow-estimator 2.1.0
MODEL:
model = Sequential()
model.add(Embedding(MAX_NB_WORDS, EMBEDDING_DIM, input_shape=(X.shape[1],)))
model.add(GlobalAveragePooling1D())
#model.add(Dense(10, activation='sigmoid'))
model.add(Dense(len(CATEGORIES), activation='softmax'))
model.summary()
#opt = 'adam' # Here we can choose a certain optimizer for our model
opt = 'rmsprop'
model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy']) # Here we choose the loss function, input our optimizer choice, and set our metrics.
# Create a TensorBoard instance with the path to the logs directory
tensorboard = TensorBoard(log_dir='logs/{}'.format(time()),
histogram_freq = 1,
embeddings_freq = 1,
embeddings_data = X)
history = model.fit(X, Y, epochs=epochs, batch_size=batch_size, validation_split=0.1, callbacks=[tensorboard])
ERROR:
C:\Users\Bruno\AppData\Local\Programs\Python\Python37\lib\site-packages\keras\callbacks\tensorboard_v2.py:102: UserWarning: The TensorBoard callback does not support embeddings display when using TensorFlow 2.0. Embeddings-related arguments are ignored.
warnings.warn('The TensorBoard callback does not support '
C:\Users\Bruno\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\framework\indexed_slices.py:433: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.
"Converting sparse IndexedSlices to a dense Tensor of unknown shape. "
Train on 1123 samples, validate on 125 samples
Traceback (most recent call last):
File ".\NN_Training.py", line 128, in <module>
history = model.fit(X, Y, epochs=epochs, batch_size=batch_size, validation_split=0.1, callbacks=[tensorboard]) # Feed in the train
set for X and y and run the model!!!
File "C:\Users\Bruno\AppData\Local\Programs\Python\Python37\lib\site-packages\keras\engine\training.py", line 1239, in fit
validation_freq=validation_freq)
File "C:\Users\Bruno\AppData\Local\Programs\Python\Python37\lib\site-packages\keras\engine\training_arrays.py", line 119, in fit_loop
callbacks.set_model(callback_model)
File "C:\Users\Bruno\AppData\Local\Programs\Python\Python37\lib\site-packages\keras\callbacks\callbacks.py", line 68, in set_model
callback.set_model(model)
File "C:\Users\Bruno\AppData\Local\Programs\Python\Python37\lib\site-packages\keras\callbacks\tensorboard_v2.py", line 116, in set_model
super(TensorBoard, self).set_model(model)
File "C:\Users\Bruno\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\keras\callbacks.py", line 1532, in
set_model
self.log_dir, self.model._get_distribution_strategy()) # pylint: disable=protected-access
AttributeError: 'Sequential' object has no attribute '_get_distribution_strategy'```
It seems that your python environment is mixing imports from keras
and tensorflow.keras
. Try to use Sequential module like this:
model = tensorflow.keras.Sequential()
Or change your imports to something like
import tensorflow
layers = tensorflow.keras.layers
BatchNormalization = tensorflow.keras.layers.BatchNormalization
Conv2D = tensorflow.keras.layers.Conv2D
Flatten = tensorflow.keras.layers.Flatten
TensorBoard = tensorflow.keras.callbacks.TensorBoard
ModelCheckpoint = tensorflow.keras.callbacks.ModelCheckpoint
...etc
You are mixing imports between keras
and tf.keras
, they are not the same library and doing this is not supported.
You should make all imports from one of the libraries, either keras
or tf.keras
.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With