I am playing with a model which should take a 8x8 chess board as input, encoded as a 224x224 grey image, and then output a 64x13 one-hot-encoded logistic regression = probabilities of pieces on the squares.
Now, after the Convolutional layers I don't quite know, how to proceed to get a 2D-Dense layer as a result/target.
I tried adding a Dense(64,13) as a layer to my Sequential model, but I get the error "Dense` can accept only 1 positional arguments ('units',)"
Is it even possible to train for 2D-targets?
EDIT1: Here is the relevant part of my code, simplified:
# X.shape = (10000, 224, 224, 1)
# Y.shape = (10000, 64, 13)
model = Sequential([
Conv2D(8, (3,3), activation='relu', input_shape=(224, 224, 1)),
Conv2D(8, (3,3), activation='relu'),
# some more repetitive Conv + Pooling Layers here
Flatten(),
Dense(64,13)
])
TypeError:
Dense
can accept only 1 positional arguments ('units',), but you passed the following positional arguments: [64, 13]
EDIT2: As Anand V. Singh suggested, I changed Dense(64, 13) to Dense(832), which works fine. Loss = mse.
Wouldn't it be better to use "sparse_categorical_crossentropy" as loss and 64x1 encoding (instead of 64x13) ?
In Dense you only pass the number of layers you expect as output, if you want (64x13) as output, put the layer dimension as Dense(832)
(64x13 = 832) and then reshape later. You will also need to reshape Y so as to accurately calculate loss, which will be used for back propagation.
# X.shape = (10000, 224, 224, 1)
# Y.shape = (10000, 64, 13)
Y = Y.reshape(10000, 64*13)
model = Sequential([
Conv2D(8, (3,3), activation='relu', input_shape=(224, 224, 1)),
Conv2D(8, (3,3), activation='relu'),
# some more repetitive Conv + Pooling Layers here
Flatten(),
Dense(64*13)
])
That should get the job done, if it doesn't post where it fails and we can proceed further.
A Reshape
layer allows you to control the output shape.
Flatten(),
Dense(64*13),
Reshape((64,13))#2D
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With