I have been trying to implement Karatsuba Algorithm in java without using BigInteger. My code is applicable only when both the integers are same & have same number of digits. I do not get the correct answer however I get answer which is quite near to the right one. For instance I get 149 when 12*12. I can not figure out what is wrong with my code since I believe I have done everything right (by the book). Here's my code.
public static void main(String[] args) {
long ans=karatsuba(12,12);
System.out.println(ans);
}
private static long karatsuba(long i, long j) {
if (i<10 || j<10){
return i*j;
}
int n=getCount(i);
long a=(long) (i/Math.pow(10, n/2));
long b=(long) (i%Math.pow(10, n/2));
long c=(long) (j/Math.pow(10, n/2));
long d=(long) (j%Math.pow(10, n/2));
long first=karatsuba(a,c);
long second=karatsuba(b,d);
long third=karatsuba(a+b,c+d);
return ((long) ((first*Math.pow(10, n))+((third-first-second)*Math.pow(10,n/2))+third));
}
private static int getCount(long i) {
String totalN=Long.toString(i);
return totalN.length();
}
EDIT:
Thanks to Ziyao Wei, the problem was replacing "third" by "second". However I have another issue now which is:
If karatsuba(1234,5678) is called I get the correct answer however when I call karatsuba(5678,1234) I do not get the right answer. Could anyone possibly know the reason for that? My updated code is:
public static void main(String[] args) {
//wrong answer
long ans=karatsuba(5678,1234);
System.out.println(ans);
//correct answer
long ans1=karatsuba(1234,5678);
System.out.println(ans1);
}
private static long karatsuba(long i, long j) {
if (i<10 || j<10){
return i*j;
}
int n=getCount(i);
long a=(long) (i/Math.pow(10, n/2));
long b=(long) (i%Math.pow(10, n/2));
long c=(long) (j/Math.pow(10, n/2));
long d=(long) (j%Math.pow(10, n/2));
long first=karatsuba(a,c);
long second=karatsuba(b,d);
long third=karatsuba(a+b,c+d);
return ((long) ((first*Math.pow(10, n))+((third-first-second)*Math.pow(10, n/2))+second));
}
UPDATE:
I have managed to round up value for "n/2" hence it solves the problem however if numbers more than four digits are used bugs occur. Here is my updated code:
public static void main(String[] args) {
System.out.println(Math.round(5.00/2));
//correct answer
long ans=karatsuba(5678,1234);
System.out.println(ans);
//correct answer
long ans1=karatsuba(1234,5678);
System.out.println(ans1);
//wrong answer
long ans2=karatsuba(102456,102465);
System.out.println(ans2);
}
private static long karatsuba(long i, long j) {
if (i<10 || j<10){
return i*j;
}
double n=Math.round(getCount(i));
long a=(long) (i/Math.pow(10, Math.round(n/2)));
long b=(long) (i%Math.pow(10, Math.round(n/2)));
long c=(long) (j/Math.pow(10, Math.round(n/2)));
long d=(long) (j%Math.pow(10, Math.round(n/2)));
long first=karatsuba(a,c);
long second=karatsuba(b,d);
long third=karatsuba(a+b,c+d);
return ((long) ((first*Math.pow(10, Math.round(n)))+((third-second-first)*Math.pow(10, Math.round(n/2)))+second));
}
private static double getCount(long i) {
String totalN=Long.toString(i);
return totalN.length();
}
If somebody comes up with the solution for larger numbers (more than four digits) without using BigInteger then please do let me know. Thanks.
You formula is wrong.
first * Math.pow(10, n) + (third - first - second) * Math.pow(10, n / 2) + third
is wrong, the formula should be
first * Math.pow(10, n) + (third - first - second) * Math.pow(10, n / 2) + second
Wikipedia:
z0 = karatsuba(low1,low2)
z1 = karatsuba((low1+high1),(low2+high2))
z2 = karatsuba(high1,high2)
return (z2*10^(m))+((z1-z2-z0)*10^(m/2))+(z0)
The last bug is that round(n) should be 2*round(n/2). They obviously differ for odd n.
Concerning int n=getCount(i);
it's a source of dissymetry, so it should be changed.
For efficiency it should not be replaced by max(getCount(i),getCount(j))
as I read in a comment above, but rather with min
.
Indeed, Karatsuba only makes sense when splitting well balanced numbers.
Try and decompose the operations performed with max and min to be sure...
Finally, after several hours of thinking I've found right solution:
public static long karatsuba(long i, long j) {
if (i < 10 || j < 10) {
return i * j;
}
double n = Math.round(getCount(i));
if (n % 2 == 1) {
n++;
}
long a = (long) (i / Math.pow(10, Math.round(n / 2)));
long b = (long) (i % Math.pow(10, Math.round(n / 2)));
long c = (long) (j / Math.pow(10, Math.round(n / 2)));
long d = (long) (j % Math.pow(10, Math.round(n / 2)));
long first = karatsuba(a, c);
long second = karatsuba(b, d);
long third = karatsuba(a + b, c + d);
return ((long) ((first * Math.pow(10, n)) + ((third - first - second) * Math.pow(10, Math.round(n / 2))) + second));
}
I can't explain why n can't be odd, but right now multiplication is working correctly for the bunch of tests I've written. I will explain this behavior as soon as I'll find out.
Update: I'm taking Algorithms: Design and Analysis, Part 1 course on coursera, and posted a question about this behavior. Here is an answer by Andrew Patton:
As mentioned elsewhere, the key with breaking up the inputs is to make sure that b and d are the same length, so that a and c have the same power of 10 as coefficients. Whatever that power is becomes your n/2; ... So, the value of the n in 10^n is not actually the total length of your inputs, but rather n/2*2.
So in case of 3 digit number following you example:
n = 3;
n/2 = 2;
n != n/2 * 2;
So n should be equal n/2 * 2 = 4 in this example.
Hope this make sense.
Here is the correct implementation using longs:
import java.util.Scanner;
/**
* x=5678 y=1234
*
* a=56,b=78
*
* c=12,d=34
*
* step 0 = m = n/2 + n%2
*
* step 1 = a*c
*
* step 2 = b*d
*
* step 3 = (a + b)*(c + d)
*
* step 4 = 3) - 2) - 1)
*
* step 5 = 1)*pow(10, m*2) + 2) + 4)*pow(10, m)
*
*/
public class Karatsuba {
public static void main(String[] args) {
long x, y;
try (Scanner s = new Scanner(System.in)) {
x = s.nextLong();
y = s.nextLong();
}
long result = karatsuba(x, y);
System.out.println(result);
}
private static long karatsuba(long x, long y) {
if (x < 10 && y < 10)
return x * y;
int n = Math.max(Long.valueOf(x).toString().length(), (Long.valueOf(y).toString().length()));
int m = n / 2 + n % 2;
long a = x / (long) Math.pow(10, m);
long b = x % (long) Math.pow(10, m);
long c = y / (long) Math.pow(10, m);
long d = y % (long) Math.pow(10, m);
long step1 = karatsuba(a, c);
long step2 = karatsuba(b, d);
long step3 = karatsuba(a + b, c + d);
long step4 = step3 - step2 - step1;
long step5 = step1 * (long) Math.pow(10, m * 2) + step2 + step4 * (long) Math.pow(10, m);
return step5;
}
}
Using BigIntegers:
import java.math.BigInteger;
import java.util.Scanner;
/**
* x=5678 y=1234
*
* a=56,b=78
*
* c=12,d=34
*
* step 0 = m = n/2 + n%2
*
* step 1 = a*c
*
* step 2 = b*d
*
* step 3 = (a + b)*(c + d)
*
* step 4 = 3) - 2) - 1)
*
* step 5 = 1)*pow(10, m*2) + 2) + 4)*pow(10, m)
*
*/
public class Karatsuba {
public static void main(String[] args) {
BigInteger x, y;
try (Scanner s = new Scanner(System.in)) {
x = s.nextBigInteger();
y = s.nextBigInteger();
}
BigInteger result = karatsuba(x, y);
System.out.println(result);
}
private static BigInteger karatsuba(BigInteger x, BigInteger y) {
if (x.compareTo(BigInteger.valueOf(10)) < 0 && y.compareTo(BigInteger.valueOf(10)) < 0)
return x.multiply(y);
int n = Math.max(x.toString().length(), y.toString().length());
int m = n / 2 + n % 2;
BigInteger[] a_b = x.divideAndRemainder(BigInteger.valueOf(10).pow(m));
BigInteger a = a_b[0];
BigInteger b = a_b[1];
BigInteger[] c_d = y.divideAndRemainder(BigInteger.valueOf(10).pow(m));
BigInteger c = c_d[0];
BigInteger d = c_d[1];
BigInteger step1 = karatsuba(a, c);
BigInteger step2 = karatsuba(b, d);
BigInteger step3 = karatsuba(a.add(b), c.add(d));
BigInteger step4 = step3.subtract(step2).subtract(step1);
BigInteger step5 = step1.multiply(BigInteger.valueOf(10).pow(m * 2)).add(step2)
.add(step4.multiply(BigInteger.valueOf(10).pow(m)));
return step5;
}
}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With