I have a processor that takes json string from a topic, with type GenericRecord. Now i split the stream in 2 branch. I take the first branch and i map the (key, value) in 2 string containing a specific field of json and a value of that field and i group by key. And so far so good. Now i have to aggregate the stream with a new Type user defined and i receive an exception.
Here the code:
The new type:
private class Tuple {
public int occ;
public int sum;
public Tuple (int occ, int sum) {
this.occ = occ;
this.sum = sum;
}
public void sum (int toAdd) {
this.sum += toAdd;
this.occ ++;
}
public int getAverage () {
return this.sum / this.occ;
}
public String toString() {
return occ + "-> " + sum + ": " + getAverage();
}
The good stream:
StreamsBuilder builder = new StreamsBuilder();
KStream<GenericRecord, GenericRecord> source =
builder.stream(topic);
KStream<GenericRecord, GenericRecord>[] branches = source.branch(
(key,value) -> partition(value.toString()),
(key, value) -> true
);
KGroupedStream <String, String> groupedStream = branches[0]
.mapValues(value -> createJson(value.toString()))
.map((key, value) -> KeyValue.pair(new String("T_DUR_CICLO"), value.getNumberValue("payload", "T_DUR_CICLO")))
.peek((key, value) -> System.out.println("key=" + key + ", value=" + value))
.groupByKey();
The problem:
KTable<String, Tuple> aggregatedStream = groupedStream.aggregate(
() -> new Tuple (0,0), // initializer
(aggKey, newValue, aggValue) -> new Tuple (aggValue.occ + 1, aggValue.sum + Integer.parseInt(newValue)));
KafkaStreams streams = new KafkaStreams(builder.build(), props);
streams.start();
This is the exception:
Exception in thread "streamtest-6173d6a2-4a3a-4d76-b793-774719f8b1f5-StreamThread-1" org.apache.kafka.streams.errors.StreamsException: Exception caught in process. taskId=1_0, processor=KSTREAM-SOURCE-0000000011, topic=streamtest-KSTREAM-AGGREGATE-STATE-STORE-0000000007-repartition, partition=0, offset=0
at org.apache.kafka.streams.processor.internals.StreamTask.process(StreamTask.java:318)
at org.apache.kafka.streams.processor.internals.AssignedStreamsTasks.process(AssignedStreamsTasks.java:94)
at org.apache.kafka.streams.processor.internals.TaskManager.process(TaskManager.java:409)
at org.apache.kafka.streams.processor.internals.StreamThread.processAndMaybeCommit(StreamThread.java:964)
at org.apache.kafka.streams.processor.internals.StreamThread.runOnce(StreamThread.java:832)
at org.apache.kafka.streams.processor.internals.StreamThread.runLoop(StreamThread.java:767)
at org.apache.kafka.streams.processor.internals.StreamThread.run(StreamThread.java:736)
Caused by: org.apache.kafka.streams.errors.StreamsException: A serializer (value: io.confluent.kafka.streams.serdes.avro.GenericAvroSerializer) is not compatible to the actual value type (value type: com.mycompany.maventest.Streamer$Tuple). Change the default Serdes in StreamConfig or provide correct Serdes via method parameters.
at org.apache.kafka.streams.state.StateSerdes.rawValue(StateSerdes.java:195)
at org.apache.kafka.streams.state.internals.MeteredKeyValueBytesStore$1.innerValue(MeteredKeyValueBytesStore.java:66)
at org.apache.kafka.streams.state.internals.MeteredKeyValueBytesStore$1.innerValue(MeteredKeyValueBytesStore.java:57)
at org.apache.kafka.streams.state.internals.InnerMeteredKeyValueStore.put(InnerMeteredKeyValueStore.java:206)
at org.apache.kafka.streams.state.internals.MeteredKeyValueBytesStore.put(MeteredKeyValueBytesStore.java:117)
at org.apache.kafka.streams.kstream.internals.KStreamAggregate$KStreamAggregateProcessor.process(KStreamAggregate.java:94)
at org.apache.kafka.streams.processor.internals.ProcessorNode$1.run(ProcessorNode.java:50)
at org.apache.kafka.streams.processor.internals.ProcessorNode.runAndMeasureLatency(ProcessorNode.java:244)
at org.apache.kafka.streams.processor.internals.ProcessorNode.process(ProcessorNode.java:133)
at org.apache.kafka.streams.processor.internals.ProcessorContextImpl.forward(ProcessorContextImpl.java:143)
at org.apache.kafka.streams.processor.internals.ProcessorContextImpl.forward(ProcessorContextImpl.java:126)
at org.apache.kafka.streams.processor.internals.ProcessorContextImpl.forward(ProcessorContextImpl.java:90)
at org.apache.kafka.streams.processor.internals.SourceNode.process(SourceNode.java:87)
at org.apache.kafka.streams.processor.internals.StreamTask.process(StreamTask.java:302)
... 6 more
Caused by: java.lang.ClassCastException: com.mycompany.maventest.Streamer$Tuple cannot be cast to org.apache.avro.generic.GenericRecord
at io.confluent.kafka.streams.serdes.avro.GenericAvroSerializer.serialize(GenericAvroSerializer.java:39)
at org.apache.kafka.streams.state.StateSerdes.rawValue(StateSerdes.java:191)
... 19 more
How i can resolve this?
----- UPDATE ------
The producer produce with Avro so i have this configuration prperties:
props.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, GenericAvroSerde.class);
props.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, GenericAvroSerde.class);
If i specific the custom serde this is the result:
KTable<String, Tuple> aggregatedStream = groupedStream.aggregate(
() -> new Tuple(0, 0), // initializer
(aggKey, newValue, aggValue) -> new Tuple (aggValue.occ + 1, aggValue.sum + Integer.parseInt(newValue)),
Materialized.with(Serdes.String(), new MySerde()));
The Exception:
Exception in thread "streamtest-17deb5c8-ed07-4fcf-bd59-37b75e44b83f-StreamThread-1" org.apache.kafka.streams.errors.StreamsException: Deserialization exception handler is set to fail upon a deserialization error. If you would rather have the streaming pipeline continue after a deserialization error, please set the default.deserialization.exception.handler appropriately.
at org.apache.kafka.streams.processor.internals.RecordDeserializer.deserialize(RecordDeserializer.java:80)
at org.apache.kafka.streams.processor.internals.RecordQueue.addRawRecords(RecordQueue.java:97)
at org.apache.kafka.streams.processor.internals.PartitionGroup.addRawRecords(PartitionGroup.java:117)
at org.apache.kafka.streams.processor.internals.StreamTask.addRecords(StreamTask.java:677)
at org.apache.kafka.streams.processor.internals.StreamThread.addRecordsToTasks(StreamThread.java:943)
at org.apache.kafka.streams.processor.internals.StreamThread.runOnce(StreamThread.java:831)
at org.apache.kafka.streams.processor.internals.StreamThread.runLoop(StreamThread.java:767)
at org.apache.kafka.streams.processor.internals.StreamThread.run(StreamThread.java:736)
Caused by: org.apache.kafka.common.errors.SerializationException: Error deserializing Avro message for id -1
Caused by: org.apache.kafka.common.errors.SerializationException: Unknown magic byte!
--- SOLVED ---- I have added also the new serde for the type change in groupBy
KGroupedStream <String, String> groupedStream = branches[0]
.mapValues(value -> createJson(value.toString()))
.map((key, value) -> KeyValue.pair(new String("T_DUR_CICLO"), value.getNumberValue("payload", "T_DUR_CICLO")))
.peek((key, value) -> System.out.println("key=" + key + ", value=" + value))
.groupByKey( Serialized.with(
Serdes.String(), /* key (note: type was modified) */
Serdes.String())); /* value */
Kafka Streams natively supports "incremental" aggregation functions, in which the aggregation result is updated based on the values captured by each window. Incremental functions include `count()`, `sum()`, `min()`, and `max()`.
Introducing the aggregation in Kafka and explained this in easy way to implement the Aggregation on real time streaming. In order to aggregate the stream we need do two steps operations. Group the stream — groupBy(k,v) (if Key exist in stream) or groupByKey() — Data must partitioned by key.
Aggregating is a generalization of combining via reduce(...) as it, for example, allows the result to have a different type than the input values. The result is written into a local KeyValueStore (which is basically an ever-updating materialized view) that can be queried by the given store name in materialized .
KStream, KTable and GlobalKTable. Kafka Streams provides two abstractions for Streams and Tables. KStream handles the stream of records. On the other hand, KTable manages the changelog stream with the latest state of a given key. Each data record represents an update.
Kafka streams will use the default Serde unless it is explicitly specified with the operations.
In the aggregate() method, you are defining valueType as Tuple
while the default serde is for GenericRecord
hence it throws the exception. You need to specify the serde like below :
KTable<String, Tuple> aggregatedStream = groupedStream.aggregate(
() -> new Tuple (0,0), // initializer
(aggKey, newValue, aggValue) ->
new Tuple (aggValue.occ + 1, aggValue.sum + Integer.parseInt(newValue))
,Materialized.with(keySerde, tupleSerde));
It will use the tupleSerde for this operation. You can find the example here: https://docs.confluent.io/current/streams/developer-guide/dsl-api.html#aggregating
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With