Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Javascript async loop processing

I have a javascript loop that takes some time to process. I wish I could slim it down but it has to process a large amount of data. While it's running the browser becomes unresponsive of course. I've read the best way to handle this in javascript is using an asynchronous loop of some sort. This way mouse clicks, etc, can continue to be processed in between loop processing. Is there any standard async frameworks that will work well for this? Or can someone provide a simple example of how this might be coded? Thanks!

like image 841
skinneejoe Avatar asked Mar 19 '12 14:03

skinneejoe


People also ask

Is JavaScript for loop asynchronous?

For loops. Combining async with a for (or a for...of ) loop is possibly the most straightforward option when performing asynchronous operations over array elements. Using await inside a for loop will cause the code to stop and wait for the asynchronous operation to complete before continuing.

How does JavaScript asynchronous processing work?

Asynchronous programming is a technique that enables your program to start a potentially long-running task and still be able to be responsive to other events while that task runs, rather than having to wait until that task has finished. Once that task has finished, your program is presented with the result.

Can I use async await in for loop?

You need to place the loop in an async function, then you can use await and the loop stops the iteration until the promise we're awaiting resolves. You could also use while or do.. while or for loops too with this same structure. But you can't await with Array.

How do you wait for loop to finish?

To use Javascript promises in a for loop, use async / await . This waits for each promiseAction to complete before continuing to the next iteration in the loop.


1 Answers

Sadly WebWorkers are not available yet on everyone's browser. I have been using the "setTimeout(Func,0);" trick for about year. Here is some recent research i wrote up to explain how to speed it up a bit. If you just want the answer, skip to Step 4. Step 1 2 and 3 explain the reasoning and mechanics;

// In Depth Analysis of the setTimeout(Func,0) trick.

//////// setTimeout(Func,0) Step 1 ////////////
// setTimeout and setInterval impose a minimum 
// time limit of about 2 to 10 milliseconds.

  console.log("start");
  var workCounter=0;
  var WorkHard = function()
  {
    if(workCounter>=2000) {console.log("done"); return;}
    workCounter++;
    setTimeout(WorkHard,0);
  };

// this take about 9 seconds
// that works out to be about 4.5ms per iteration
// Now there is a subtle rule here that you can tweak
// This minimum is counted from the time the setTimeout was executed.
// THEREFORE:

  console.log("start");
  var workCounter=0;
  var WorkHard = function()
  {
    if(workCounter>=2000) {console.log("done"); return;}
    setTimeout(WorkHard,0);
    workCounter++;
  };

// This code is slightly faster because we register the setTimeout
// a line of code earlier. Actually, the speed difference is immesurable 
// in this case, but the concept is true. Step 2 shows a measurable example.
///////////////////////////////////////////////


//////// setTimeout(Func,0) Step 2 ////////////
// Here is a measurable example of the concept covered in Step 1.

  var StartWork = function()
  {
    console.log("start");
    var startTime = new Date();
    var workCounter=0;
    var sum=0;
    var WorkHard = function()
    {
      if(workCounter>=2000) 
      {
        var ms = (new Date()).getTime() - startTime.getTime();
        console.log("done: sum=" + sum + " time=" + ms + "ms"); 
        return;
      }
      for(var i=0; i<1500000; i++) {sum++;}
      workCounter++;
      setTimeout(WorkHard,0);
    };
    WorkHard();
  };

// This adds some difficulty to the work instead of just incrementing a number
// This prints "done: sum=3000000000 time=18809ms".
// So it took 18.8 seconds.

  var StartWork = function()
  {
    console.log("start");
    var startTime = new Date();
    var workCounter=0;
    var sum=0;
    var WorkHard = function()
    {
      if(workCounter>=2000) 
      {
        var ms = (new Date()).getTime() - startTime.getTime();
        console.log("done: sum=" + sum + " time=" + ms + "ms"); 
        return;
      }
      setTimeout(WorkHard,0);
      for(var i=0; i<1500000; i++) {sum++;}
      workCounter++;
    };
    WorkHard();
  };

// Now, as we planned, we move the setTimeout to before the difficult part
// This prints: "done: sum=3000000000 time=12680ms"
// So it took 12.6 seconds. With a little math, (18.8-12.6)/2000 = 3.1ms
// We have effectively shaved off 3.1ms of the original 4.5ms of dead time.
// Assuming some of that time may be attributed to function calls and variable 
// instantiations, we have eliminated the wait time imposed by setTimeout.

// LESSON LEARNED: If you want to use the setTimeout(Func,0) trick with high 
// performance in mind, make sure your function takes more than 4.5ms, and set 
// the next timeout at the start of your function, instead of the end.
///////////////////////////////////////////////


//////// setTimeout(Func,0) Step 3 ////////////
// The results of Step 2 are very educational, but it doesn't really tell us how to apply the
// concept to the real world.  Step 2 says "make sure your function takes more than 4.5ms".
// No one makes functions that take 4.5ms. Functions either take a few microseconds, 
// or several seconds, or several minutes. This magic 4.5ms is unattainable.

// To solve the problem, we introduce the concept of "Burn Time".
// Lets assume that you can break up your difficult function into pieces that take 
// a few milliseconds or less to complete. Then the concept of Burn Time says, 
// "crunch several of the individual pieces until we reach 4.5ms, then exit"

// Step 1 shows a function that is asyncronous, but takes 9 seconds to run. In reality
// we could have easilly incremented workCounter 2000 times in under a millisecond.
// So, duh, that should not be made asyncronous, its horrible. But what if you don't know
// how many times you need to increment the number, maybe you need to run the loop 20 times,
// maybe you need to run the loop 2 billion times.

  console.log("start");
  var startTime = new Date();
  var workCounter=0;
  for(var i=0; i<2000000000; i++) // 2 billion
  {
    workCounter++;
  }
  var ms = (new Date()).getTime() - startTime.getTime();
  console.log("done: workCounter=" + workCounter + " time=" + ms + "ms"); 

// prints: "done: workCounter=2000000000 time=7214ms"
// So it took 7.2 seconds. Can we break this up into smaller pieces? Yes.
// I know, this is a retarded example, bear with me.

  console.log("start");
  var startTime = new Date();
  var workCounter=0;
  var each = function()
  {
    workCounter++;
  };
  for(var i=0; i<20000000; i++) // 20 million
  {
    each();
  }
  var ms = (new Date()).getTime() - startTime.getTime();
  console.log("done: workCounter=" + workCounter + " time=" + ms + "ms"); 

// The easiest way is to break it up into 2 billion smaller pieces, each of which take 
// only several picoseconds to run. Ok, actually, I am reducing the number from 2 billion
// to 20 million (100x less).  Just adding a function call increases the complexity of the loop
// 100 fold. Good lesson for some other topic.
// prints: "done: workCounter=20000000 time=7648ms"
// So it took 7.6 seconds, thats a good starting point.
// Now, lets sprinkle in the async part with the burn concept

  console.log("start");
  var startTime = new Date();
  var workCounter=0;
  var index=0;
  var end = 20000000;
  var each = function()
  {
    workCounter++;
  };
  var Work = function()
  {
    var burnTimeout = new Date();
    burnTimeout.setTime(burnTimeout.getTime() + 4.5); // burnTimeout set to 4.5ms in the future
    while((new Date()) < burnTimeout)
    {
      if(index>=end) 
      {
        var ms = (new Date()).getTime() - startTime.getTime();
        console.log("done: workCounter=" + workCounter + " time=" + ms + "ms"); 
        return;
      }
      each();
      index++;
    }
    setTimeout(Work,0);
  };

// prints "done: workCounter=20000000 time=107119ms"
// Sweet Jesus, I increased my 7.6 second function to 107.1 seconds.
// But it does prevent the browser from locking up, So i guess thats a plus.
// Again, the actual objective here is just to increment workCounter, so the overhead of all
// the async garbage is huge in comparison. 
// Anyway, Lets start by taking advice from Step 2 and move the setTimeout above the hard part. 

  console.log("start");
  var startTime = new Date();
  var workCounter=0;
  var index=0;
  var end = 20000000;
  var each = function()
  {
    workCounter++;
  };
  var Work = function()
  {
    if(index>=end) {return;}
    setTimeout(Work,0);
    var burnTimeout = new Date();
    burnTimeout.setTime(burnTimeout.getTime() + 4.5); // burnTimeout set to 4.5ms in the future
    while((new Date()) < burnTimeout)
    {
      if(index>=end) 
      {
        var ms = (new Date()).getTime() - startTime.getTime();
        console.log("done: workCounter=" + workCounter + " time=" + ms + "ms"); 
        return;
      }
      each();
      index++;
    }
  };

// This means we also have to check index right away because the last iteration will have nothing to do
// prints "done: workCounter=20000000 time=52892ms"  
// So, it took 52.8 seconds. Improvement, but way slower than the native 7.6 seconds.
// The Burn Time is the number you tweak to get a nice balance between native loop speed
// and browser responsiveness. Lets change it from 4.5ms to 50ms, because we don't really need faster
// than 50ms gui response.

  console.log("start");
  var startTime = new Date();
  var workCounter=0;
  var index=0;
  var end = 20000000;
  var each = function()
  {
    workCounter++;
  };
  var Work = function()
  {
    if(index>=end) {return;}
    setTimeout(Work,0);
    var burnTimeout = new Date();
    burnTimeout.setTime(burnTimeout.getTime() + 50); // burnTimeout set to 50ms in the future
    while((new Date()) < burnTimeout)
    {
      if(index>=end) 
      {
        var ms = (new Date()).getTime() - startTime.getTime();
        console.log("done: workCounter=" + workCounter + " time=" + ms + "ms"); 
        return;
      }
      each();
      index++;
    }
  };

// prints "done: workCounter=20000000 time=52272ms"
// So it took 52.2 seconds. No real improvement here which proves that the imposed limits of setTimeout
// have been eliminated as long as the burn time is anything over 4.5ms
///////////////////////////////////////////////


//////// setTimeout(Func,0) Step 4 ////////////
// The performance numbers from Step 3 seem pretty grim, but GUI responsiveness is often worth it.
// Here is a short library that embodies these concepts and gives a descent interface.

  var WilkesAsyncBurn = function()
  {
    var Now = function() {return (new Date());};
    var CreateFutureDate = function(milliseconds)
    {
      var t = Now();
      t.setTime(t.getTime() + milliseconds);
      return t;
    };
    var For = function(start, end, eachCallback, finalCallback, msBurnTime)
    {
      var i = start;
      var Each = function()
      {
        if(i==-1) {return;} //always does one last each with nothing to do
        setTimeout(Each,0);
        var burnTimeout = CreateFutureDate(msBurnTime);
        while(Now() < burnTimeout)
        {
          if(i>=end) {i=-1; finalCallback(); return;}
          eachCallback(i);
          i++;
        }
      };
      Each();
    };
    var ForEach = function(array, eachCallback, finalCallback, msBurnTime)
    {
      var i = 0;
      var len = array.length;
      var Each = function()
      {
        if(i==-1) {return;}
        setTimeout(Each,0);
        var burnTimeout = CreateFutureDate(msBurnTime);
        while(Now() < burnTimeout)
        {
          if(i>=len) {i=-1; finalCallback(array); return;}
          eachCallback(i, array[i]);
          i++;
        }
      };
      Each();
    };

    var pub = {};
    pub.For = For;          //eachCallback(index); finalCallback();
    pub.ForEach = ForEach;  //eachCallback(index,value); finalCallback(array);
    WilkesAsyncBurn = pub;
  };

///////////////////////////////////////////////


//////// setTimeout(Func,0) Step 5 ////////////
// Here is an examples of how to use the library from Step 4.

  WilkesAsyncBurn(); // Init the library
  console.log("start");
  var startTime = new Date();
  var workCounter=0;
  var FuncEach = function()
  {
    if(workCounter%1000==0)
    {
      var s = "<div></div>";
      var div = jQuery("*[class~=r1]");
      div.append(s);
    }
    workCounter++;
  };
  var FuncFinal = function()
  {
    var ms = (new Date()).getTime() - startTime.getTime();
    console.log("done: workCounter=" + workCounter + " time=" + ms + "ms"); 
  };
  WilkesAsyncBurn.For(0,2000000,FuncEach,FuncFinal,50);

// prints: "done: workCounter=20000000 time=149303ms"
// Also appends a few thousand divs to the html page, about 20 at a time.
// The browser is responsive the entire time, mission accomplished

// LESSON LEARNED: If your code pieces are super tiny, like incrementing a number, or walking through 
// an array summing the numbers, then just putting it in an "each" function is going to kill you. 
// You can still use the concept here, but your "each" function should also have a for loop in it 
// where you burn a few hundred items manually.  
///////////////////////////////////////////////
like image 101
rocketsarefast Avatar answered Oct 12 '22 20:10

rocketsarefast