I just had a quick question on how processors and threads work. According to my current understanding, a core can only perform 1 process at a time. But we are able to produce a thread pool(lets say 30) with a larger number than the number of cores that we posses(lets say 4) and have them run concurrently. How is this possible if we are only have 4 cores? I am also able to run my 30 thread program on my local computer and also continue to perform other activities on my computer such as watch movies or browse the internet.
I have read somewhere that scheduling of threads occurs and that sort of gives the illusion that these 30 threads are running concurrently by the 4 cores. Is this true and if so can someone explain how this works and also recommend some good reading on this?
Thank you in advance for the help.
The number of threads you have depends on the number of cores in your CPU. Each CPU core can have two threads. So a processor with two cores will have four threads. A processor with eight cores will have 16 threads.
A single CPU core can have up-to 2 threads per core. For example, if a CPU is dual core (i.e., 2 cores) it will have 4 threads.
You can make use of multiple cores using multiple threads. But using a higher number of threads than the number of cores present in a machine can simply be a waste of resources. You can use availableProcessors() to get the number of cores. In Java 7 there is fork/join framework to make use of multiple cores.
Each CPU-core can run only one thread at any given moment. So for example in a quad-core machine, the maximum number of threads that can run in parallel is 4.
In days of old, each process had precisely one thread of execution, so processes were scheduled onto cores directly (and in these old days, there was almost only one core to schedule onto). However, in operating systems that support threading (which is almost all moderns OS's), it is threads, not processes that are scheduled. So for the rest of this discussion we will talk exclusively about threads, and you should understand that each running process has one or more threads of execution.
When two threads are running in parallel, they are both running at the same time. For example, if we have two threads, A and B, then their parallel execution would look like this:
CPU 1: A ------------------------->
CPU 2: B ------------------------->
When two threads are running concurrently, their execution overlaps. Overlapping can happen in one of two ways: either the threads are executing at the same time (i.e. in parallel, as above), or their executions are being interleaved on the processor, like so:
CPU 1: A -----------> B ----------> A -----------> B ---------->
So, for our purposes, parallelism can be thought of as a special case of concurrency*
But we are able to produce a thread pool(lets say 30) with a larger number than the number of cores that we posses(lets say 4) and have them run concurrently. How is this possible if we are only have 4 cores?
In this case, they can run concurrently because the CPU scheduler is giving each one of those 30 threads some share of CPU time. Some threads will be running in parallel (if you have 4 cores, then 4 threads will be running in parallel at any one time), but all 30 threads will be running concurrently. The reason you can then go play games or browse the web is that these new threads are added to the thread pool/queue and also given a share of CPU time.
According to my current understanding, a core can only perform 1 process at a time
This is not quite true. Due to very clever hardware design and pipelining that would be much too long to go into here (plus I don't understand it), it is possible for one physical core to actually be executing two completely different threads of execution at the same time. Chew over that sentence a bit if you need to -- it still blows my mind.
This amazing feat is called simultaneous multi-threading (or popularly Hyper-Threading, although that is a proprietary name for a specific instance of such technology). Thus, we have physical cores, which are the actual hardware CPU cores, and logical cores, which is the number of cores the operating system tells software is available for use. Logical cores are essentially an abstraction. In typical modern Intel CPUs, each physical core acts as two logical cores.
can someone explain how this works and also recommend some good reading on this?
I would recommend Operating System Concepts if you really want to understand how processes, threads, and scheduling all work together.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With