I have created a server by using ServerSocket
. After that, I have created Client using Socket
, and connect to this server.
After that, I do "some stuff" with InputStream and OutputStream is taken from Socket Object. But, I don't really understand inputStream and outputStream so much. Here is my simple code :
private Socket sock = null;
private InputStream sockInput = null;
private OutputStream sockOutput = null;
...
String msg = "Hello World";
byte[] buffer = null;
try {
sockOutput.write(msg.getBytes(), 0, test.length());
sockOutput.write("Hello StackOverFlow".getBytes(), 0, test.length());
buffer = new byte[test.length()];
sockInput.read(buffer, 0, test.length());
System.out.println(new String(buffer));
sockInput.read(buffer, 0, test.length());
System.out.println(new String(buffer));
} catch (IOException e1) {
e1.printStackTrace();
}
The result will be : "Hello World" and "Hello StackOverFlow".
Here is server side code :
private int serverPort = 0;
private ServerSocket serverSock = null;
public VerySimpleServer(int serverPort) {
this.serverPort = serverPort;
try {
serverSock = new ServerSocket(this.serverPort);
}
catch (IOException e){
e.printStackTrace(System.err);
}
}
// All this method does is wait for some bytes from the
// connection, read them, then write them back again, until the
// socket is closed from the other side.
public void handleConnection(InputStream sockInput, OutputStream sockOutput) {
while(true) {
byte[] buf=new byte[1024];
int bytes_read = 0;
try {
// This call to read() will wait forever, until the
// program on the other side either sends some data,
// or closes the socket.
bytes_read = sockInput.read(buf, 0, buf.length);
// If the socket is closed, sockInput.read() will return -1.
if(bytes_read < 0) {
System.err.println("Server: Tried to read from socket, read() returned < 0, Closing socket.");
return;
}
System.err.println("Server: Received "+bytes_read
+" bytes, sending them back to client, data="
+(new String(buf, 0, bytes_read)));
sockOutput.write(buf, 0, bytes_read);
// This call to flush() is optional - we're saying go
// ahead and send the data now instead of buffering
// it.
sockOutput.flush();
}
catch (Exception e){
System.err.println("Exception reading from/writing to socket, e="+e);
e.printStackTrace(System.err);
return;
}
}
}
public void waitForConnections() {
Socket sock = null;
InputStream sockInput = null;
OutputStream sockOutput = null;
while (true) {
try {
// This method call, accept(), blocks and waits
// (forever if necessary) until some other program
// opens a socket connection to our server. When some
// other program opens a connection to our server,
// accept() creates a new socket to represent that
// connection and returns.
sock = serverSock.accept();
System.err.println("Server : Have accepted new socket.");
// From this point on, no new socket connections can
// be made to our server until we call accept() again.
sockInput = sock.getInputStream();
sockOutput = sock.getOutputStream();
}
catch (IOException e){
e.printStackTrace(System.err);
}
// Do something with the socket - read bytes from the
// socket and write them back to the socket until the
// other side closes the connection.
handleConnection(sockInput, sockOutput);
// Now we close the socket.
try {
System.err.println("Closing socket.");
sock.close();
}
catch (Exception e){
System.err.println("Exception while closing socket.");
e.printStackTrace(System.err);
}
System.err.println("Finished with socket, waiting for next connection.");
}
}
public static void main(String argv[]) {
int port = 54321;
VerySimpleServer server = new VerySimpleServer(port);
server.waitForConnections();
}
My question is :
When I use sockOutput.write
and I can get back those message back by sockInput.read
. So, those message has been saved, right? If this true, does it saved on Server I have created or just saved in some other thing such as Socket Object
.
If I have written to socket String A1, A2,... An so I will receive A1, A2, ... An String respectively, right?
In Java, streams are the sequence of data that are read from the source and written to the destination. An input stream is used to read data from the source. And, an output stream is used to write data to the destination.
In Java, to send data via the socket, you get an OutputStream (1) from it, and write to the OutputStream (you output some data). To read data from the socket, you get its InputStream , and read input from this second stream. You can think of the streams as a pair of one-way pipes connected to a socket on the wall.
Sockets use streams to communicate. Streams consist of an ordered sequence of bytes. All TCP/IP communication in Java is done with streams. There are two abstract base classes that are used to create streams in Java. InputStream-used to receive data.
A socket is one endpoint of a two-way communication link between two programs running on the network. A socket is bound to a port number so that the TCP layer can identify the application that data is destined to be sent to. An endpoint is a combination of an IP address and a port number.
A socket is an abstraction that you use to talk to something across the network. See diagram below...
In Java, to send data via the socket, you get an OutputStream
(1) from it, and write to the OutputStream
(you output some data).
To read data from the socket, you get its InputStream
, and read input from this second stream.
You can think of the streams as a pair of one-way pipes connected to a socket on the wall. What happens on the other side of the wall is not your problem!
In your case, the server has another socket (the other end of the connection) and another pair of streams. It uses its InputStream
(2) to read from the network, and its OutputStream
(3) to write the same data back across the network to your client, which reads it again via its InputStream
(4) completing the round trip.
Client Server
1. OutputStream -->\ /--> 2. InputStream -->
Socket <--> network <--> ServerSocket |
4. InputStream <--/ \<--3. OutputStream <--
Updated: in reply to comment:
Note that the streams and sockets just send raw bytes; they have no notion of a "message" at this level of abstraction. So if you send X bytes and another X bytes, then read X bytes and read another X bytes, then your system behaves as if there are two messages, because that's how you've divided up the bytes.
If you send X bytes, and another X bytes, then read a reply of length 2X, then you might be able to read a single combined "message", but as you've noticed, the underlying implementation of the streams can choose when to deliver chunks of bytes, so it might return X bytes, then X bytes, later, or 2X at once, or 0.5X four times...
InputStream
and OutputStream
are two completely separate streams. What you write into one has no a priori relation to what you read from the other. The InputStream
gives you whatever data the server decides to send to you. I would also like to comment on this piece of your code:
sockOutput.write(msg.getBytes(), 0, test.length());
sockOutput.write("Hello StackOverFlow".getBytes(), 0, test.length());
You use the length of a string test
(not shown in your code), which has nothing to do with the byte array you are passing as the first argument. This can cause an ArrayIndexOutOfBoundsException
or truncation of your intended message.
Reviewing your server-side code, it is not quite correctly written. You need to have try { handleConnection(...); } finally { socket.close(); }
to ensure proper cleanup after an error, as well as when completing normally. Your code never closes anything on the server side.
Finally, and most critically, your entire code is written in a way that can result in a deadlock. Normally you need a separate thread to read and to write; otherwise the following may happen:
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With